Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Представление коэффициентов как функций частоты колебаний и температуры

Представление коэффициентов как функций частоты колебаний и температуры  [c.116]

Принцип наложения температурного и частотного факторов. Если учитывать влияние на демпфирующие свойства материала как частоты колебаний, так и температуры, то наиболее удобным способом представления экспериментальных данных является использование принципа температурно-частотной эквивалентности (приведенной частоты) для линейных вязкоупругих материалов [3.2, 3.3]. Согласно этому способу, по одной оси координат откладываются параметры (7 оро/Тр) и т), а по другой— так называемый параметр приведенной частоты шаг, где (О — действительная частота, ат — функция абсолютной температуры Т, То — фиксированное значение абсолютной температуры. Обычно отношения То/Т и ро/р считаются равными единице для широкого диапазона изменения температур и поэтому во внимание не принимаются. Построение генеральных кривых зависимости модуля упругости Е и коэффициента потерь ц от параметра аат исключительно полезно при экстраполяции результатов экспериментов, получаемых при сильно различающихся условиях. Например, в серии экспериментов можно получить данные для диапазона частот от 100 до 1000 Гц и диапазона температур от О до 100 °С, а требуется определить свойства при 50°С и 2 Гц. Для этого сначала используются имеющиеся результаты для построения системы наиболее достоверных генеральных кривых. Эту процедуру наиболее удобно выполнять эмпирически путем задания значений коэффициента ат на основе смещений, необходимых для построения кривой, описывающей зависимость модуля упругости Е от частоты в логарифмических координатах (см. рис. 3.4) при температуре Ti (i = 1, 2,. ..), с тем чтобы кривая была как можно ближе к кривой для зависимости модуля упругости Е от частоты при температуре То. Тем же способом подбираются кривые для зависимостей коэффициента потерь т) от частоты колебаний при температурах Т и То, причем получаются графики, аналогичные показанным на рис. 3.10. Таким образом удается по крайней мере частично компенсировать ограниченные возможности измерительной техники. Типичные графики зависимости ат от температуры показаны на рис. 3.11.  [c.117]



Смотреть главы в:

Демпфирование колебаний  -> Представление коэффициентов как функций частоты колебаний и температуры



ПОИСК



Температуры колебания

Частота колебаний

Частота колебаний (частота)



© 2025 Mash-xxl.info Реклама на сайте