Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ДЕМПФИРОВАНИЕ В КОНСТРУКЦИЯХ И МАТЕРИАЛАХ

Демпфирование в конструкциях и материалах  [c.59]

Настоящая книга задумана ее авторами как систематическое, не перегруженное математическим аппаратом и техническими подробностями пособие для инженеров, работающих в различных областях промышленности, содержащее анализ процесса демпфирования колебаний. В монографии основное внимание уделено демпфированию в конструкциях из различных материалов, в том числе полимеров, эластомеров, стеклообразных материалов, и его влиянию на поведение колеблющейся конструкции. Оценивается влияние дискретных и поверхностных демпферов на колебания конструкций и их роль в проблеме снижения уровня колебаний. В последней главе представлены таблицы комплексных модулей ряда листовых вязкоупругих материалов в зависимости от температуры и частоты.  [c.5]


Кроме СИЛ сопротивления, пропорциональных скорости движения, затухание колебаний (демпфирование) в реальных конструкциях может обусловливаться и другими причинами, в частности, потерями на рассеяние энергии в самом материале упругого элемента системы, т. е. потерями гистерезисного типа, величина которых, оказывается, зависит уже не от скорости, а от амплитуды колебаний. Другим распространенным источником потерь энергии при колебаниях является рассеяние энергии за счет сил трения в сочленениях элементов конструкции, утечки энергии в фундамент и т. д.  [c.606]

Одним пз общих методов увеличения потерь в конструкции является внесение в нее элементов с повышенным демпфированием. Наиболее широко распространенным элементом такого типа является демпфирующее покрытие [239, 292, 297]. Эффективность покрытия зависит от формы движения конструкции [86, 273]. Поэтому для ее рационального использования требуется расчет собственных форм [4, 178, 254, 287, 292, 293]. В настоящее время имеется довольно широкий набор материалов для нанесения на конструкции в качестве демпфирующих вибропоглощающих покрытий [4, 235, 236]. Так, нанесение некоторых и  [c.222]

При анализе процесса демпфирования колебаний конструкций авторы в основном основываются на стержневой модели Бернулли — Эйлера, в дифференциальное уравнение которой вводят приведенную изгибную жесткость. Для слоистых конструкций, составленных из металлов, это приемлемо в тех же случаях, когда сопротивление материалов слоев различается очень существенно, когда используется комбинация мягкого и жесткого материалов, гипотезы Бернулли и Тимошенко для всего поперечного сечения могут оказаться неприемлемыми и здесь неизбежно построение более сложных механических моделей стержней, учитывающих поперечный сдвиг и поперечное обжатие каждого слоя. Авторы исследуют процессы колебаний весьма сложных конструкций и, естественно, пытаются использовать простейшую модель для ее анализа. Однако прежде чем использовать простейшую модель, соответствующую линейному дифференциальному уравнению четвертого порядка, уместно было бы сопоставить эту модель с модифицированной, отвечающей существу проблемы, для оценки сделанных допущений.  [c.7]

Эта книга предназначена для тех, кто занимается решением проблем колебаний и шума, возникаюш,их в самых разных отраслях машиностроения и строительстве. Инженеры, чья деятельность непосредственно связана с автомобильной, аэрокосмической, судостроительной промышленностью, а также иными отраслями машиностроения, найдут здесь не только много практических сведений, но и строгие теоретические выкладки, которые могут служить основой для применения промышленных приемов демпфирования в новых, еще неизвестных ситуациях. Демпфирование колебаний с помощью вязкоупругих демпфирующих материалов превратилось в последние годы из специального приема, предназначенного для решения трудных и многоплановых задач в некоторых военных аэрокосмических системах, в широко используемый, часто недорогой, метод, связывающий конструкционные и функциональные подходы, особенно необходимый при решении проблем звуко- и виброизоляции в таких отраслях промышленности, как автомобильное,, в том числе и дизельное двигателестроение, строительство, производство ЭВМ и транспортных систем. Авторам приходилось непосредственно сталкиваться с самыми разными сторонами указанных проблем, поэтому многое из того, что приведено в данной книге, является результатом их собственных исследований в этой новой области и опыта применения демпфирующих устройств в реальных конструкциях.  [c.8]


В гл. 1 обсуждаются основы теории колебаний и виды демпфирования. В гл. 2 и 3 вводятся основные понятия о том, как описывается явление демпфирования, причем особое внимание уделяется вязкоупругому демпфированию, определяющему поведение полимерных и стекловидных материалов, а также эластомеров. В гл. 4 описывается влияние вязкоупругого демпфирования на динамическое поведение конструкций, причем основной упор сделан на описании важного для практики случая системы с одной степенью свободы. В гл. 5 рассматривается тот же вопрос применительно к исследованию влияния дискретных демпфирующих устройств типа настроенных демпферов на динамическое поведение конструкции. В гл. 6 описано влияние обширного класса демпфирующих устройств типа систем с поверхностными покрытиями или слоистой структурой, в гл. 7 приведены диаграммы для определения комплексных модулей упругости для большого числа интересных с точки зрения конструктора материалов. В каждую главу включены иллюстрации, примеры и случаи из практики, с тем чтобы показать читателю, как можно использовать теорию и справочные данные при решении практических задач подавления колебаний и шумов.  [c.9]

Продемонстрировать влияние как температуры, так и частоты колебаний, был выбран метод, основанный на исследовании колебаний балки. Кроме того, так как материал часто используется в конструкциях слоистого типа, необходимо воспроизвести условия, соответствующие сдвигающей нагрузке. Поэтому были выбраны трехслойные балки. Зависимости динамических перемещений от частоты колебаний для типичной трехслойной балки с демпфированием показаны на рис, 3.20 для различных значений температур, диапазон которых охватывает как область стекловидных материалов, так и область резиноподобных материалов. На рис. 3.21 и 3.22 показаны зависимости частоты и коэффициента потерь материала для каждой формы колебаний от температуры. Каждая точка, либо являющаяся непосредственным результатом эксперимента, либо принадлежащая некоторой сглаживающей данные экспериментов кривой, может быть использована для определения характеристик материала. Однако пользоваться сглаживающими кривыми рекомендуется в том случае, когда разброс экспериментальных данных невелик. При выполнении таких подсчетов предполагается, что геометрические характеристики балки и частоты ее колебаний без  [c.133]

Когда в конструкцию намеренно вводится демпфирование, то несколько изменяются и отдельные узлы, поскольку при колебаниях конструкции ее части деформируются и в свою очередь воздействуют на присоединенные вязкоупругие элементы, рассеивающие энергию. Если для того, чтобы успешно решать задачи колебаний конструкции, используются демпфирующие материалы, то необходимо понимать не только поведение демпфирующих материалов, но также и связанную с этим задачу динамики конструкции. Для облегчения понимания часто оказывается эффективнее с точки зрения затрат исследовать математическую модель, дающую упрощенное представление о динамических характеристиках конструкции. Это могут быть математические модели самой разной сложности, начиная от системы с одной степенью свободы, соответствующей телу единичной массы, соединенному с пружиной, и кончая тонкими аналитическими представлениями о непрерывной системе с распределенными массой, жесткостью и демпфирующими свойствами, на которую действует распределенная возмущающая силовая функция. Степень сложности модели, используемой в процессе решения задачи, зависит не только от сложности конструкции, но и от времени и других ресурсов, которыми располагает инженер для решения задачи.  [c.136]

Из табл. 8 следует, что в варианте I наибольшее демпфирование обеспечивается за счет поворота в заделке. Применив материал с большим внутренним трением, но с несколько меньшей жесткостью (вариант И), получим изменение б анса демпфирования в пользу внутреннего трения в материале, но при этом постоянная времени демпфирования всей конструкции изменится всего в 1,5 раза прн падении суммарной жесткости в 2 раза. Увеличение затяжки в опоре приводит к еще более резкому увеличению доли внутреннего трения и падению постоянной времени демпфирования более чем в 5 раз. Таким образом применение материалов с большой демпфирующей способностью в данном случае неэффективно. Из сравнения вариантов I и II следует, что при почти одинаковой жесткости демпфирующая способность в первом случае оказывается значительно большей. Поэтому с точки зрения повышения демпфирования нецелесообразно применять чрезмерно затянутые стыки.  [c.34]

Иногда конструкция системы или ее узлов может быть выполнена только с использованием композиционных материалов. Это относится в первую очередь к конструкциям, для которых особое значение имеют теплофизические свойства, стабильность размеров, способность к демпфированию и электромагнитные свойства. В следующей главе рассмотрены конкретные примеры таких конструкций.  [c.109]

Вибрационные напряжения деталей, особенно в области средних и высоких частот, как правило, не превышают 20 кгс/см. При таких напряжениях машиностроительную конструкцию можно рассматривать как линеаризированную упруговязкую систему, расчетные коэффициенты поглощения материала которой учитывают потери в материале и соединениях деталей. Как было показано в главе 1, расчет колебаний демпфированных конструкций может производиться разложением амплитудной функции в ряд по собственным формам недемпфированной системы или методом динамических податливостей и жесткостей с комплексными модулями упругости. Последние методы особенно предпочтительны для неоднородных систем, с различными коэффициентами поглощения в подсистемах (например, амортизированные балочные конструкции).  [c.101]


Составными являются конструкции, имеющие механические средства крепежа, такие, как заклепки, болты и винты. К подобным конструкциям относятся и обшивка со стрингерами на заклепках, являющаяся элементом фюзеляжа самолета, и составные блоки дизельных двигателей. Примерами цельных или сварных конструкций являются звукопоглощающие оболочки и лопатки турбин. Цельные конструкции обычно имеют высокое начальное демпфирование, при котором коэффициент потерь может достигать значения 0,05. Это значение намного превышает то, которое можно получить в сварных или цельных конструкциях, потому что демпфирование за счет соединений будет минимальным, и измерения дают значение коэффициента конструкционных потерь, сопоставимое с потерями в самом материале, т. е. около 10- . .. 10-5 для стальных или алюминиевых конструкций. Поэтому увеличение коэффициента демпфирования, скажем, в десять раз для сборных конструкций является гораздо более сложной задачей, чем для цельной или сварной конструкции. Различным случаям применения должны соответствовать различные способы обработки материалов и конструктивные приемы, повышающие демпфирующую способность, что зависит от демпфирующих свойств исходной конструкции.  [c.40]

Демпфирование колебаний в зубчатых муфтах определяется потерями в разъемных соединениях и в материале элементов конструкции. При малых амплитудах колебаний демпфирование можно описать эквивалентным коэффициентом потерь в системе или логарифмическим декрементом колебаний. Обычно коэффициент потерь определяется для каждой конструкции экспериментально по аналогичной модели.  [c.80]

Факторами, снижающими колебательные деформации, являются естественное демпфирование вследствие внутреннего трения в материале и узлах конструкций или внешнего трения от взаимодействия с внешней средой, а также искусственное демпфирование и успокоение колебаний за счет применения различных устройств— антивибраторов, демпферов или успокоителей.  [c.348]

Увеличение механического импеданса колебательной системы, как известно, достигается выбором материалов и конструкции с малой жесткостью и большим внутренним трением использованием прокладок с малым значением модуля Юнга в местах сочленения отдельных элементов конструкции искусственным демпфированием вибрирующей поверхности различными покрытиями. Метод ослабления колебаний за счет присоединения к исследуемой системе дополнительных импедансов, преимущественно активных, называется вибропоглощением. Он заключается в нанесении упруговязких материалов, обладающих большими внутренними потерями, на вибрирующие элементы машины, причем вибропоглощающий материал должен быть плотно скреплен с колеблющейся поверхностью. Искусственное увеличение потерь колебательной энергии в системе значительно уменьшает амплитуды колебаний особенно в резонансных областях.  [c.127]

Потери в конструкциях. Выше говорилось о потерях в материалах и в отдельных однородных упругих элементах. Рассмотрим теперь потери в конструкциях, которые составлены из многих элементов, изготовленных из различных материалов. Очевидно, что общие потери в конструкции складываются из потерь в ее составных элементах. Однако вклад этих элементарных потерь в общие потери различен и существенным образом зависит от формы колебаний конструкции в целол1. Так, потери машины, установленной на амортизаторы, зависят от того, насколько близко к пучностям или узлам собственной формы колебаний машины расположены амортизаторы. Потери в простейшей конструкции — однородном стержне — зависят от того, совершает он из-гибные, продольные или крутильные колебания. На одной и той же частоте потери этих трех форм движения различны, так как обусловлены разными физическими механизмами демпфирования. Для расчета общих потерь в конструкции, таким образом, требуется знать не только потери в отдельных ее элементах, но и форму колебаний всей конструкции. Ниже приводятся примеры расчета потерь в двух типичных составных машинных конструкциях и обсуждаются полученные результаты. Такие расчеты необходимы при проектировании машинных конструкций с оптимальными демпфирующими свойствами.  [c.218]

Кроме того, при прямом классическом подходе возникает проблема моделирования демпфирования. Если конструкция изготовлена из однородного материала, то одно из решений заключается в замене в уравнении (1.1) модуля Юнга Е на комплексный модуль Е -fill) [1-11—1-13] (см. гл. 2), но это даег необходимый результат лишь для материалов, обладающих линейными характеристиками демпфирования, которые могут зависеть или не зависеть от частоты колебаний. Если демпфирование вводится в точке, опоре, подшипнике или каким-либо-иным конструктивным решением, то необходимо вводить демпфирующие силы и (или) моменты, значения которых определяются экспериментально или аналитическими методами. Эта  [c.21]

Поскольку материалом для подкрепляющего слоя, как правило, является металл, то коэффициент потерь г]з можно в большинстве случаев полагать равным нулю. Что касается коэффициента потерь т]1, то он должен соответствовать демпфированию исследуемой резонансной формы колебаний. Во многих случаях, например для сварных и сборных конструкций, конструкционное демпфирование почти такое же, как и демпфирование, определяемое свойствами материала, поэтому здесь можно полагать т) =0. Однако в конструкциях с сильным демпфированием в местах соединений типа заклепочных или болтовых конструкционное демпфирование tji может оказаться важным фактором, и его следует учитывать при исследовании ди-ламического поведения.  [c.275]

Влияние краевого защемления яа демпфирование слоистых металлических пакетов / Когут И. С.— В кн. Многослойные сварные конструкции и трубы Материалы I Всесоюа. конф. Киев Наук, думка, 1984, с. 217—221.  [c.385]

Удельными характеристиками демпфирования являются коэффициенты внутренней и контактной вязкости. Объемными или поверхностными характеристиками демпфирования являются коэффициенты затухания и их частный вид — коэффициенты вязкого трения. Есть характеристики, производные не только от демпфирования, но и от жесткости и массы системы. Такими характеристиками являются логарифмический декремент колебаний, относительное рассеяние энергии, добротность и т. п. Каждая из этих характеристик имеет свою область применения и не является достаточно универсальной. Исключение составляет постоянная времени демпфирования. Она является как удельной характеристикой, так и объемной, причем при известных и довольно часто выполняемых условиях постоянная времени демпфирования единицы объема материала и изготовленной из него детали одна и та же. Она не зависит ни от величины объема, ни от его формы и остается постоянной во всей области амплитудно-независимого трения или при одном и том же напряженном состоянии для любого вида трения. Постоянная времени демпфирования в стыке не зависит от его формы и площади при соблюдении приведенного выше условия. Если рассматривать ряд геометрически подобных конструкций, состоящих из одних и тех же материалов, то демпфирующая способность их, определяемая постоянной времени демпфирования, будет одной, и той же, если условия работы этих конструкций и, в частности, напряжения в них будут рдни и те же, так как постоянная времени демпфирования сложной конструкции является линейной функцией постоянвых времени демпфирования простых элементов, входящих в эту конструкцию. Коэффициенты линейной зависимости являются такими же функциями геометрических размеров тела и его конструктивных параметров, как и жесткость. Независимость постоянных времени демпфирования от абсолютных размеров конструкций в случае их подобия является важным свойством, которым не обладают другие характеристики демпфирования (например, логарифмический декремент колебаний или относительное рассеяние энергии). Этот закон нарушается в случае нелинейной зависимости затухания от деформации, что можно учесть, рассматривая конструкции в об-28  [c.28]


При шлифовании, когда толщина срезаемого слоя имеет порядок нескольких микрон, а скорость резания превышает600м/мин, динамические добавки к характеристике резания можно не учитывать, так как демпфирующая способность станков не может быть меньше 10 с. При чистовом и получистовом точении, расточке, фрезеровании, когда толщина срезаемого слоя имеет порядок 0,1 мм, динамические добавки к характеристике резания следует учитывать при обработке твердым сплавом и быстрорежущей сталью. При обработке со скоростями порядка 1000 м/мин с применением минералокерамики или синтетических материалов динамические добавки к характеристике резания можно не учитывать. При черновой обработке резцами даже с применением минералокерамических инструментов, допускающих черновую обработку сталей со скоростями 600—1000 м/мин, необходимо учитывать динамические добавки к характеристике резания. Ими можно пренебрегать лишь в конструкциях станков, обладающих повышенным демпфированием.  [c.97]

Отметим, что в этом случае получается комплексная и недиагональная матрица, хотя часто оказывается, что влияние недиагональных членов мало по сравнению с диагональными. Дальнейшая процедура также требует укорочения рядов, но теперь наиболее эффективным методом решения будет использование вычислительных машин для решения системы комплексных матричных уравнений. Здесь это не будет делаться, поскольку наша цель — лишь проиллюстрировать, что можно и чего нельзя сделать прежде, чем приступать к подробному решению этой конкретной задачи. Следует отметить важное обстоятельство несмотря на появление указанного сингулярного выражения в точке х = 1, порядок уравнений задачи не увеличился, в то время как в прямом методе это было не так. Легкость, с которой это решение было получено, указывает на тот факт, что не математический подход создает трудности при учете недиагональных членов в разрешающей матрице (хотя иногда это, конечно, может случиться), а, скорее, отсутствие достаточно полных сведений о механизме демпфирования и о точках его приложения. Что же касается обратного перехода от замера форм колебаний к оценке физической модели механизма демпфирования (что полностью противоположно процессу, описанному ранее), то он исключительно труден в лучшем случае и невозможен — в худшем. Однако для многих эластомеров, полимеров и стекловидных материалов, рассматриваемых в данной книге, разумное количественное математическое описание не только возможно, но и стало весьма совершенным, так что его можно использовать для оценки влияния технологических обработок (для демпфирования) или демпфирующих механизмов (при использовании указанных материалов) на поведение конструкции, шумоизоляцию или акустическое излучение. То же самое можно сказать и о некоторых нелинейных демпфирующих системах типа металлов с высокими демпфирующими свойствами или типа демпферов с сухим трением, хотя при этом существенно возрастают математические трудности, обусловленные учетом нелинейности.  [c.29]

Современный, основанный на методе конечных элементов подход является перспективным при исследовании динамических характеристик сложных конструкций, в которых могут возникать колебания различных форм. Многоцелевые пакеты программ NASTRAN, ANSYS и MAR [4.12] давно используются многими исследователями для решения задач о колебаниях конструкций. Обычно метод конечных элементов используется для определения резонансных частот и нормальных форм колебаний. Многие из этих пакетов программ позволяют учитывать в той или иной форме демпфирование. Однако если метод конечных элементов используется для получения количественных оценок влияния вязкоупругих материалов, имеющихся в рассматриваемой конструкции, то следует быть очень внимательным, чтобы не попасть в ловушку. Опасность здесь таят как необозримо большое время расчета на ЭВМ и высокие требования при работе с комплексными числами, характеризующими жесткости, так и чрезмерное упрощение задачи при попытке получить решаемую систему уравнений, поскольку эти уравнения будут неправильно моделировать реальную задачу.  [c.187]

Для уменьшения шума, передаваемого изготовленными из листового металла узлами типа масляных поддонов, крышек клапанов и распределительных шестерен, где демпфирование не было предусмотрено их конструкцией, необходимо устанавливать звукоизоляцию вокруг подобных узлов. Однако, как уже говорилось выше, многие изолирующие системы приводят при их установке к утечкам шумов в стыках. Всякого рода ограждения не являются приемлемым решением, поскольку они утяжеляют и удорожают конструкцию, порождают проблемы изготовления и 9бслуживания. Демпфирующие устройства из металлических полос, изготовленные в виде слоистых штамповок, позволяют устранить все эти недостатки, за исключением увеличения расходов на материалы, но последние составляют небольшую долю полной стоимости их изготовления. В ситуациях, подобных этим, введение демпфирующих устройств является приемлемым решением, поскольку оно более практично и экономичнее остальных решений.  [c.383]


Смотреть страницы где упоминается термин ДЕМПФИРОВАНИЕ В КОНСТРУКЦИЯХ И МАТЕРИАЛАХ : [c.544]    [c.221]    [c.250]    [c.34]    [c.45]    [c.82]    [c.272]   
Смотреть главы в:

Демпфирование колебаний  -> ДЕМПФИРОВАНИЕ В КОНСТРУКЦИЯХ И МАТЕРИАЛАХ



ПОИСК



Демпфирование



© 2025 Mash-xxl.info Реклама на сайте