Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы контроля колебаний

МЕТОДЫ КОНТРОЛЯ КОЛЕБАНИЙ  [c.39]

Погрешность обката можно определять путем измерения накопленной погрешности окружного шага зубчатого колеса, не снятого с зуборезного станка, или же при точном совмещении базы при обработке и контроле. Эту погрешность можно определять косвенно, путем проверки кинематической погрешности зубообрабатывающего станка. Для этой же цели можно использовать метод контроля колебания длины общей нормали зубчатого колеса.  [c.461]

При использовании стоячих волн возбуждают свободные или вынужденные колебания либо объекта контроля в целом (интегральные методы), либо его части (локальные методы). Свободные колебания возбуждают путем кратковременного внешнего воздействия на объект контроля, например, ударом, после чего он колеблется свободно. Вынужденные колебания предполагают постоянную связь колеблющегося объекта контроля с возбуждающим генератором, частоту которого изменяют. Информационными параметрами являются частоты свободных колебаний или резонансов вынужденных колебаний, которые несколько отличаются в связи с воздействием возбуждающего генератора. Эти частоты связаны с геометрическими параметрами изделий и скоростью распространения в них ультразвука. Иногда измеряют величины, связанные с затуханием колебаний в объекте контроля амплитуды свободных или резонансных колебаний, добротность колебаний, ширину резонансного пика.  [c.98]


Схема контроля локальным методом свободных колебаний (в этом варианте его называют просто методом свободных колебаний) показана на рис. 2.5, в. В части контролируемого изделия, например слоистой панели, возбуждают колебания с помощью ударов молоточком вибратора 10 и анализируют спектр возбуждаемых частот спектроанализатором 9. В дефектных изделиях спектр, как правило, смещен в сторону высоких частот.  [c.98]

Интегральный метод вынужденных колебаний применяют для определения модуля упругости материала по резонансным частотам продольных, изгибных или крутильных колебаний образцов простой геометрической формы, вырезанных из изделия, т. е. при разрушающих испытаниях. Последнее время этот метод используют для неразрушающего контроля небольших изделий абразивных кругов, турбинных лопаток. Появление дефектов или изменение свойств материалов определяют по изменению спектра резонансных частот. Свойства, связанные с затуханием ультразвука (изменение структуры, появление мелких трещин), контролируют по изменению добротности колебательной системы. Интегральный метод свободных колебаний используют для проверки бандажей вагонных колес или стеклянной посуды по чистоте звука.  [c.102]

Методы свободных колебаний предполагают отсутствие постоянной связи системы возбуждения с объектом контроля. Интегральный метод свободных колебаний используют очень давно при проверке стеклянной посуды, бандажей железнодорожных  [c.125]

Локальный метод свободных колебаний используют для контроля клееных неметаллических и композиционных материалов. Применительно к металлам его используют для высокоточного измерения толщины изделий, в частности труб при этом трубу помещают в локальную иммерсионную ванну.  [c.126]

Методы вынужденных колебаний. Принципиальный недостаток этих методов состоит в том, что связь колеблющегося объекта контроля с возбуждающей колебания внешней системой приводит к смещению резонансных частот относительно частот свободных колебаний. Учесть это смещение трудно, а иногда невозможно, поэтому обычно считают, что частоты резонансов и свободных колебаний совпадают, допуская систематическую погрешность.  [c.127]

Упругие свойства зерен, соединенных в плоскости сварки через оксидную пленку, а также их ориентация, форма и размеры отличаются от соответствующих параметров зерен качественного соединения. Эта особенность может быть использована при выявлении дефектов контактной сварки типа оксидных пленок. Экспериментально установлено, что при взаимодействии УЗ-волн, направленных в металл под углом 50 к плоскости сварки, амплитуды зеркальных сигналов от дефектов типа оксидных пленок превышают амплитуды сигналов структурных шумов бездефектного шва. Поскольку такие дефекты являются плоскими и характеризуются в основном зеркальным отражением, для их обнаружения рекомендуется применять зеркальный эхо-метод контроля по схеме тандем, т. е. прозвучивание шва двумя преобразователями, расположенными с одной стороны шва друг за другом при этом один преобразователь излучает УЗ-колебания, другой — принимает.  [c.357]

Акустические (ультразвуковые) методы контроля основаны на исследовании процесса распространения и взаимодействия (отражения, преломления, поглощения и рассеяния) упругих колебаний в контролируемом изделии.  [c.19]


Ультразвуковой метод контроля чаще всего используют при проверке крупномодульных шестерен и осуществляют с помощью серийных дефектоскопов. При этом в зависимости от расположения трещин в шестернях для поиска применяют различные типы и углы ввода УЗ волн. Так, продольные колебания могут подаваться в зависимости от типоразмеров (модуля) шестерни, под углом 10—15° со стороны вершины зуба (рис. 7.1), а при этом угол ввода должен обеспечивать прохождение ультразвука в металле зуба по касательной к межзубной впадине. Практика показала, что этими преобразователями на частоте  [c.120]

Повышения чувствительности гидростатического метода контроля можно добиться за счет ввода колебаний в индикаторное вещество или в контролируемый объект [50]. Интересные результаты были получены Я. Р. Коноваловым и И. М. Германовичем [28] в опытах по определению влияния вибрации на высоту и скорость поднятия жидкости в стеклянных капиллярах диаметром 0,12 и 0,352 мм. Исследования проводили с использованием воды, эмульсии на основе товарного солидола (ГОСТ 4366—64) и машинного масла (ГОСТ 8245—56). Источником вибраций служил ультразвуковой генератор мощностью 1,5 кВт, частотой 23— 24 кГц. В результате воздействия вибраций возросла высота подъема жидкости в капиллярах (на 7—87 мм) и скорость движения через капилляры (в 3—5 раз).  [c.60]

Примечание. Для колес с круговыми зубьями толщина зубьев задается только при указании размеров резцовой головки и метода нарезания зубьев (поз. 10—14). Указываются остальные параметры контрольного комплекса, выбранного по соответствующему стандарту Примечания 1, При контроле колебания измерительного межосевого угла указание допустимых отклонений производится по образцу примера 9-а. 2. При установлении норм на пятно контакта одновременно указывается его расположение на зубьях колес пары (смещение к малому или большому дополнительному конусу) по образцу примера 9-6.  [c.196]

Определение тангенциальных составляющих кинематической погрешности цилиндрических зубчатых колес контролем колебания длины общей нормали широко распространено в машиностроении. На многих заводах в цеховых условиях осуществляется измерение не только колебания длины общей нормали, но и отклонения длины общей нормали от номинальной величины. Эти измерения производятся с целью определения толщины зуба прежде всего корригированных зубчатых колес. Распространение данного метода для выяснения толщины зуба объясняется главным образом тем, что на результаты измерения не влияют погрешности промежуточной базы, в качестве которой используется поверхность выступов при контроле зубомерами. При измерении номинальной длины общей нормали производится определение отклонения толщины зубьев, а в стандарте нормируется колебание длины общей нормали, при котором выясняются тангенциальные составляющие кинематической погрешности.  [c.188]

В некоторых случаях пневматический метод контроля является единственной возможностью обеспечить точность контроля расстояний между двумя противолежащими плоскими поверхностями. Например, для достижения однородности магнитного поля башмаки магнитных полюсов должны быть отрегулированы так, чтобы отклонения от их параллельности не превышали 1 мк. Регулировка параллельности производится с помощью анкерных винтов, расположенных по окружности башмака. Условия контроля затрудняются из-за сильного магнитного поля. Это делает невозможным применение электрического метода измерений. Применение механических измерительных средств может повредить полированную поверхность башмаков. Задача контроля осложняется также колебанием расстояния между полюсами в пределах от 26 до 28 мм.  [c.251]

Наибольшее значение для качества продукции имеет развитие следующих отраслей науки теории машин и механизмов технологии машиностроения металловедения метрологии и измерительной техники теории точности, теории вероятностей и математической статистики организации производства автоматики и телемеханики физических методов контроля и анализа техники антикоррозионных и декоративных покрытий, а также теоретической механики, сопротивления материалов, гидравлики, теории колебаний и др.  [c.4]

Основной особенностью ультразвукового метода, отличной от других методов контроля характеристик твердых и жидких сред, является отсутствие каких-либо нарушений структуры исследуемой среды как при монтаже датчиков, так и при измерении, т. е. при прохождении через исследуемую область ультразвуковых колебаний малой интенсивности. Кроме того, именно малая величина интенсивности колебаний в сочетании с высокой частотой (порядка нескольких мегагерц) и большой проникающей способностью (при использовании импульсного метода особенно) позволяет регистрировать весьма малые изменения тех или иных характеристик исследуемой среды. В каждом конкретном случае исследования используется один из пяти основных методов возбуждения колебаний продольных, сдвиговых, поверхностных, изгибнЫх й  [c.291]

Необходимой предпосылкой для контроля колебаний механических систем является понимание деталей динамического поведения систем при действии возбуждающих сил, приложенных в различных точках системы. Для решения этой задачи использовались различные подходы, включая прямое получение необходимой информации путем замеров, математическое моделирование и точное решение дифференциальных уравнений движения в частных производных, дискретное моделирование с помощью конечных элементов и решение результирующей большой системы дифференциальных уравнений второго порядка, энергетические методы и объединение решений соответствующих подсистем полной системы. Все эти подходы имеют свои достоинства и недостатки, и ни один из методов сам по себе не может считаться наилучшим. Выбор подхода определяется наличием средств и времени, опытом и искусством исследователя, без страха встречающего каждую специфическую задачу, по-  [c.14]


Широко распространены упрощенные комплексные проверки, значительно более производительные, нежели проверки отдельных элементов зубчатых колес. Поэтому часто назначают предельные отклонения для комплексных двухпрофильных методов контроля. В этих случаях определяют колебание радиального положения точной рейки или измерительного колеса при двух профильном (плотном без бокового зазора) зацеплении с колесом. Величина комплексной двухпрофильной погрешности вычисляется по формуле  [c.339]

Наибольшего применения метод ультразвукового контроля достиг при проверке сварных изделий из перлитных сталей. Для аустенитных сварных соединений использование ультразвукового контроля затруднено в связи с крупнокристаллическим строением шва и проявлением при этом эффекта отражения ультразвуковых волн от границ зерен. Попытки устранить этот эффект с помощью уменьшения частоты колебаний позволили за последнее время применить рассматриваемый метод контроля и для аустенитных сварных соединений при толщинах до 30—50 мм.  [c.97]

Контроль качества пайки рабочих лопаток производится, как правило методом осциллографирования частот собственных колебаний пакетов. Возможные дефекты паяного соединения или самого материала достаточно надежно обнаруживаются при этом методе контроля по отклонению частоты собственных колебаний пакета и по разбросу величины частот отдельных пакетов.  [c.153]

Метод свободных колебаний применяется для дефектации клеевых соединений. Он является эффективным, а в ряде случаев единственным средством контроля двух и многослойных конструкций с неметаллическими материалами средних и больших толщин. Существенными его достоинствами являются также отсутствие необходимости смачивания поверхности контролируемого изделия и возможность контроля при доступе с одной стороны.  [c.374]

Вторая особенность этого метода контроля заключается в том, что при крупном дефекте все ультразвуковые колебания отразятся в месте его расположения и на экране будут только два импульса айв. Концевого импульса б не будет. Это может дезориентировать контролера в том случае, если крупный дефект располагается вблизи конца лопатки. Импульсы на Тогда импульс от дефекта может экране дефектоскопа при быть воспринят как концевой наличии трещины на (рис. 11.8) и дефект может быть пропущен. Чтобы избежать таких  [c.553]

Акустические колебания - это механические колебания среды. При акустическом контроле обычно используют колебания с частотой 0,5...25 МГц, т. е. ультразвуковые. Поэтому большинство акустических методов являются ультразвуковыми, хотя известны случаи использования и колебаний звуковой частоты, в частности импедансный метод контроля, используемый при контроле паяных, клееных или сваренных контактной сваркой конструкций.  [c.350]

МПа. Иногда проводят пневмогидравлические испытания, создавая внутри изделия избыточное давление и погружая его в воду. Возможны и другие варианты пневматических методов контроля, например акустический метод, когда по наличию колебаний воздуха или газа, проходящего через несплошности с частотой приблизительно около 4 кГц, можно определить наличие дефектов.  [c.359]

Для контроля дефектов при сварке и пайке применяются чаще всего эхо-метод, теневой и зеркально-теневой. Можно использовать импедансный метод свободных колебаний.  [c.550]

Ультразвуковой метод контроля основан на отражении от не-сплошности (дефекта) энергии ультразвуковых механических колебаний частотой 0,2... 10 МГц и фиксации их в виде импульса на экране дефектоскопа (рис. 6.6). Контроль этим методом проводится с помощью ультразвуковых дефектоскопов (табл. 6.7). Поверхность сварных соединений перед контролем очищается механическим способом от брызг металла, шлака и окалины, после чего покрывается контактирующей средой (минеральным маслом и др.) для обеспечения необходимого контакта преобразователя с поверхностью изделия.  [c.383]

Ультразвуковая дефектоскопия, основанная на отражении от дефекта энергии ультразвуковых механических колебаний частотой 0,2... 10 МГц, проводится согласно ГОСТ 14782—86 и методическим руководящим документам (например, Госгортехнадзора России). Этот метод контроля применяют для выявления внутренних несплошностей сварных соединений.  [c.375]

Физические основы акустических методов контроля. Акустические волны — это колебательные движение частиц среды, в которой данная волна распространяется. Колебания в свою очередь — это движение вокруг некоторого среднего положения, обладающее повторяемостью. Наибольшее отклонение от среднего положения называют амплитудой колебаний. В акустике рассматривают упругие колебания (упругость — это свойство точек среды возвращаться к первоначальному состоянию). Частота (/) — это количество колебеший в секунду, которая измеряется в герцах (Гц). При ультразвуковом контроле принято измерение частоты в мегагерцах (МГц). 1 МГц — миллион колебаний в секунду. Амплитуду колебаний А обычно измеряют путем срав-НС1ШЯ с некоторой амплитудой колебания Aq, за которую часто принимают в ультразвуковом контроле (УЗК) амплитуду зондирующего (началыгого) импульса. Данное сравнение принято выражать в децибелах (дБ). При этом величину в дБ запишем как отношение А/Aq  [c.166]

Голографические методы контроля. Методы основаны на интерференции световых волн. Источником световых волн являются оптические квантовые генераторы, позволяющие получать свет с определенной длиной волны (монохроматические волны) и в определенной фазе колебаний (когерентные волны). Использование лазеров (лазерных диодов) позволяет восстанавливать мнимое объемное изображение объекта в целом либо части этого объекта. Фиксируя на детекторе (фотопластинке или экранр монитора) наложенные изображения состояния объектов (например, без нагрузки и под нагрузкой), получают интерференционные картины, которые являются источником информации о наличии дефектов в объектах контроля. При этом интерференционные картины весьма чувствительны к незначительным перемещениям частей поверхности, которые появляются в области концентрации напряжений объекта контроля вследствие наличия в нем дефекта. Метод, основанный на голографический интерференции световых волн, применяется в основном для анализа напряженно-деформированно-го состояния сварных соединений и контроля за остаточными сварочными напряжениями.  [c.211]

В отличие от методов просвечивания, ультразв>тсовые методы позволяют успешно выявлять именно трещиноподобные дефекты. Спецификой ультразвукового метода контроля является то, что он не дает конкретной информации о характере дефекта, так как на экране дефектоскопа появляется импульс, величина которого пропорциональна отражающей способности обнаруженного дефекта. Последняя зависит от многих факторов размеров дефекта, его геометрии и ориентации по отношению к направлению распространения ультразвуковых колебаний. В связи с тем, что эти параметры при контроле остаются неизвестными, обнар> -женные дефекты обычно характеризуются эквивалентной площадью, которая устанавливается в зависимости от интенсивности полученного сигнала Достоинствами л льтразвукового метода являются его меньшая по сравнению с методами просвечивания трудоемкость, а также возможность достаточно точного определения координат обнаруженного дефекта. Как показала практика применения ультразвукового метода, он не позволяет достаточно надежно обнаружить дефекты, лежащие вблизи поверхности изделия в связи с экранированием сигнала от дефекта сигналом ог поверхности. Это обстоятельство также необходимо ч читы-вать при практическом использовании данного метода контроля. Ультразвуковые методы используют как для контроля дефектов металла листов и поковок на стадии их изготовления, так и для контроля сварных соединений, для диагностики трубопроводного транспорта. На данном принципе созданы внутритрубные инспекционные снаряды (ВИС) — Ультраскан-СД, которые, двигаясь внутри трубы, считывают информацию о техническом состоянии трубопроводов. При этом фиксируется толщина стенки, коррозионные каверны, расслоения мета.лла, дефекты стресс-коррозионного происхождения.  [c.61]


При численном решении второй задачи в случае тела конечных размеров коэффициенты интенсивности напряжений определяются при помощи форм и частот свободных колебаний, которые могут сильно зависеть от конфигурации и длины дефекта. В связи с этим можно считать относягцимися к динамической механике разрушения и исследование влияния треш ии на формы и частоты свободных колебаний (такие исследования важны и для диагностики дефектов неразрушающими методами контроля).  [c.405]

Источники энергии СВЧ. Электромагнитные волны СВЧ могут быть генерированы как в виде монохроматических (когерентных) поляризованных колебаний, так й в виде некоге-рентного, хаотического излучения, обусловленного тепловым движением атомов и молекул. Для неразрушающих методов контроля применяют в основном когерентное поляризованное излучение.  [c.211]

При использовании стоячих волн возбуждаются свободные или вынужденные колебания либо объекта контроля в целом (интегральные методы), либо его части (локальные методы). Свободные колебания в объекте чаш,е всего возбуждаются путем механического удара, а вынужденные — путем воздействия гармонической силы, частота которой изменяется. Состояние (бездефектность) объекта анализируют по собственной частоте свободных колебаний либо по резонансам вынужденных колебаний. Реже используют амплитуду соответствующих колебаний.  [c.203]

Локальный метод вынужденных колебаний применяют для измерения малых толщин при одностороннем доступе. Контактный резонансный толщиномер, принцип действия которого показан на рис. 2.5, в, в 60-х годах был основным средством толщино-метрии. В настоящее время для ручного контроля применяют импульсные толщиномеры. Для автоматического измерения толщины стенок труб выпускают иммерсионные резонансные толщиномеры. Некоторыми преимуществами перед таким способом измерения толщины обладает локальный метод свободных колебаний (метод предеф). Главное преимущество заключается в возможности изменения угла падения ультразвука на трубу при сохранении точности измерений. Это упрощает конструкцию протяжного устройства.  [c.102]

При контроле способом, получившим название метода предеф колебания стенки трубы возбуждают акустическим импульсом — кратковременным либо длительным, но модулированным по частоте. После окончания возбуждения стенка изделия продолжает колебаться свободно на частоте, соответствующей полуволновой толщине h = 0,5Х. По частоте этих свободных колебаний измеряют толщину. Для этого выполняют точное измерение интервала времени т, соответствующего определенному числу N (например, N = 10) периодов свободных колебаний. Тогда h = = 0,5 %/N.  [c.126]

Разработанные в настоящее время неразрушающие методы контроля прочности [58, с. 194, 198] основываются на измерении затухания ультразвуковых колебаний в образцах. Последние связывают корреляционными зависимостями с прочностными свойствами, определяемыми при разрушении образцов,— пределом прочности при сжатии и др. В литературе приведены корреляционные зависимости между отдельными прочностными свойствами [143 128]. Однако при измерениях указанными неразрушающими методами необходимо иметь цилиндрические или призматические образцы с отношением длины к диаметру не менее 5. В том случае, когда нельзя изготовить такие образцы и, следовательно, ультразвуковые методы неприме шмы, оценить прочность можно путем измерения твердости и мпк-ротвердости.  [c.52]

При наличии тех же условий более точные данные получаются из опытов с вынужденными колебаниями, особенно в резонансных условиях. Здесь легче отделяется влияние других видов трения, исследуется их нелинейность, получаются более надежные и легко повторимые замкнутые петли гистерезиса при больших деформациях (вплоть до захода в пластическую зону), а при очень малых трение оценивается все же по измерениям самих деформаций, а не их малых разностей, более высшего порядка в методе затухающих колебаний. Искомые силы трения могут также измеряться в резонансных условиях и по величинам сил возбуждения, при возможности контроля близости к резонансам еще и путем оценки фаз колебаний. Фазы, силы и перемещения дают возможность определения рассеяния, а измерения мощности возбуждения могут дать еще дополнительные источники контрольных самостоятельных определений. Мало используемыми преимуществами являются возможности изучения промежуточных петель гистерезиса при нолигармоническом возбуждении и измерение выделяемого тепла,  [c.87]

Таким образом, ультразвуковой метод контроля является современным и надежным средством обеспечения необходимого качества продукции. Основой при разработке способа контроля является правильный выбор места контрольной операции в технологическом процессе и базы для ввода ультразвуковых колебаний. Для обеспечения контроля сложных форм необходимо путем изменения их геометрии в процессе изготовления добиваться четкого отделения зоны контроля от других поверхностей, способных отражать ультразвуковые колебания. При установке дефектоскопов в потоке следует предусматривать их изменения, направленные на максимальное сокращение времени проверки, упрощение и облегчение настройки прибора, а также улучшение условий труда дефекто-скопистов. Опыт эксплуатации дефектоскопов показал их высокую надежность в работе и хорошую приспосабливаемость к условиям массового производства. Применение ультразвука для контроля деталей дает значительный экономический эффект при полной гарантии высокого качества продукции.  [c.254]

В общем случае характерным является отноштельное положение щупа, головки заклепки и дефекта. При правильном выборе угла преломляющего луча призмы ультразвуковые колебания встречаются с дефектом - в рассматриваемом случае с трещижж на вну енней поверхности накладки. При неправильном выборе, когда угЬл преломляющего луча слишком велик или слишком мал, ультразвук проходит мимо дефекта (рис. 4.6). Для выявления трещин на головке заклепки щуп перемещается по стрелке, указанной на рис. 4.7. В ряде случаев требуется привлекать дополнительные методы контроля, чтобы дополнить информацию, полученную при УЗД. Такая необходимость появляется, когда невозможно определить характер выявленных дефектов - импульсы на осциллографе весьма близки или даже идентичны при некоторых трещинах, раковинах, шлаковых  [c.164]

Для изучения внутреннего механизма сложной реакции метод вынужденных колебаний удобней н более универсален, чем метод собственных колебаний (Атауллаханов, 1972). Зависимость частоты колебаний от концентраций может быть использована для измерения этих концентраций (Жаботинский, 1972) для контроля и управления состоянием системы.  [c.22]

В отличие от селективного отражения металлов, к-рое может быть весьма высоким (но всегда коаф. отражения R < 1), при П. в. о. для прозрачных сред Д = 1 для всех Я и не зависит практически от числа отражений. Следует, однако, отметить, что отражение от механически полированной поверхности из-за рассеяния в поверхностном слое чуть меньше единицы на величину 2-10-. Потери на рассеяние при П. в. о. от более совершенных границ раздела, наир, в волоконных световодах, ещё на неск. порядков меньше. Высокая отражат. способность границы в условиях П. в. о. широко используется в интегральной оптике, оптич. линиях связи, световодах и оптич, призмах. Высокая крутязна коэф. отражения вблизи ф р лежит в основе измерит, устройств, предназначенных для определенна показателя преломления (см. Рефрактометр). Особенности конфигурации эл.-магн. поля в условиях П. в. о., а также свойства латеральной волны используются в физике твёрдого тела для исследования поверхностных возбуждённых колебаний (плазмонов, поляритовов), находят широкое применение в спектроскопич. методах контроля поверхности на основе нарушенного П. в. о., комбинационного рассеяния света, люминесценции и для обнаружения весьма низких значений концентраций молекул и величин поглощения, вплоть до значений безразмерного показателя поглощения к 10".  [c.27]

Различают пассивные и активные акустические методы контроля сварных соединений. Пассивные методы основаны на исследовании упругих волн, возникающих в контролируемом изделии во время или по окончании технологического процесса, или при нагружении, в частности в момент образования или развития несплошностей. К ним относятся методы контроля, использующие акустическую эмиссию, а также шумо- и вибродиагностика. Активные методы основаны на исследовании распространения колебаний специально вводимых в контролируемое изделие.  [c.350]

Капиллярные методы контроля основаны на капиллярном проникновении жидкостей (пенетрантов) в дефекты и их контрастном изображении. Эти методы применяются для выявления поверхностных дефектов, в основном в изделиях из неметаллов и сплавов, для которых невозможно использовать магнитные методы контроля. Капиллярный контроль осуществляют следующим образом. После подготовки (очистки, обезжиривания) поверхности контролируемой детали на нее наносят индикаторную жидкость, например смесь керосина со скипидаром с добавкой красителя (рис. 183). Жидкость проникает внутрь дефектов. Чтобы дефекты лучше и быстрее заполнялись, при нанесении жидкости повыщают или понижают давление, воздействуют на деталь звуковыми или ультразвуковыми колебаниями или статической нагрузкой, подогревают жидкость, напыляют ее в виде аэрозоля. После нанесения жидкость с поверхности убирают (вытирают или сдувают), но в дефектах она остается. Далее струей газа, кистью или щеткой припудриванием наносят на поверхность проявитель. Это может быть, например, раствор каолина (белой глины) в этиловом спирте. Проявитель высыхает, в него всасывается из дефектов индикаторная жидкость, окрашивая места дефектов. Проявитель может быть в виде порошка (сухой способ). Можно наносить в качестве проявителя растворы люминофоров (в летучем растворителе) - тогда дефект будет светиться в ультрафиолетовых лучах (беспорошковый способ). Если добавить в индикаторную жидкость краситель и после очистки от нее поверхности нагреть деталь, то жидкость выступит на кромки дефекта, испарится, а затвердевший краситель покажет расположение де-  [c.357]


Радиографический метод контроля с использованием рентгеновского или гамма-излучения основан на просвечивании (проникновении сквозь изделие) коротковолновых электромагнитных колебаний и фиксации изображения на рентгеновской пленке (рис. 6.3 и 6.4). При просвечивании рентгеновскими лучами метод контроля называют рентгеновским если источником является гамма-излучение, метод контроля называют гамма-просвечиваением.  [c.373]


Смотреть страницы где упоминается термин Методы контроля колебаний : [c.210]    [c.72]    [c.103]    [c.3]    [c.360]   
Смотреть главы в:

Демпфирование колебаний  -> Методы контроля колебаний



ПОИСК



Методы колебаний

Методы контроля



© 2025 Mash-xxl.info Реклама на сайте