Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытания полимеров на релаксацию напряжений

ИСПЫТАНИЯ ПОЛИМЕРОВ НА РЕЛАКСАЦИЮ НАПРЯЖЕНИЙ  [c.90]

Испытания полимеров на релаксацию напряжений  [c.91]

Основные технические характеристики приборов для испытания полимеров на релаксацию напряжений приведены в табл. б.  [c.92]

Прибор ППР-50 (НИКИМП) предназначен для испытания полимеров на релаксацию напряжений при повышенных температурах (рис. 86).  [c.124]

Ползучесть — Захваты для испытания образцов 324 — Испытания металлов и сплавов 80—87 Полимеры — Испытания на ползучесть 87—90 — Испытания на релаксацию напряжений 90—93 Полярископ — Схемы 390  [c.556]


Релаксация напряжений в результате химического равновесия возможна только при относительно малых размерах молекул силана или цепей полимера на поверхности раздела. Поэтому при большой отливке термореактивной, модифицированной силаном смолы на стеклянном блоке происходит разрушение стекла в процессе циклического воздействия температуры, а та же смола в композите на основе стеклянного волокна или мелкодисперсного минерального наполнителя не вызывает растрескивания материала. Испытания на стеклянных прутках или блоках, вмонтированных в массу полимера, не воспроизводят условий, существующих на поверхности раздела в полимерных композитах, армированных стеклянным волокном.  [c.212]

Наконец, необходимо знать, как влияют температурные условия на релаксацию полимеров. С этой целью при испытаниях центральная часть стенда (рис. 41) помещалась в одном случае в специальную ванну с сухим льдом, в другом — нагревалась электронагревателем. В результате испытаний было установлено, что пониженная температура значительно уменьшает интенсивность релаксации внутреннего напряжения в уплотнении, особенно на первом этапе. Повышение температуры оказывает обратное действие. С повышением температуры интенсивность релаксации значительно увеличивается. Для линз из капролактама интенсивность релаксации при 323 К в 2,5 раза выше, чем при 223 К применительно к начальному периоду релаксации. Явления, описанные выше, объясняются структурой полимера повышенные температуры увеличивают пластичность полимера, а следовательно, и скорость релаксации. При теплосменах внутреннее напряжение в полимерных линзах значительно меняется. Прекращение процесса охлаждения соединения увеличивает напряжения в линзе.  [c.95]

Значительное увеличение температуры может двояко влиять на разрушение полимеров. С одной стороны, повышенная температура может облегчить перемещение дефектов внутри кристаллических образований, способствуя более быстрому распространению трещин с другой стороны, возросшая молекулярная подвижность может облегчить и ускорить релаксацию напряжения или пластическое течение, не сопровождающееся разрушением. На суммарный эффект может сильно влиять метод испытания. Стойкость к растрескиванию различна в случае, если напряжения в образце создаются постоянной внешней нагрузкой или в результате приложения постоянной деформации. При повышении температуры стойкость к растрескиванию уменьшается до тех пор, пока не будет достигнута температура плавления наиболее низкоплавкой фракции. Выше этой точки влияние температуры неопределенно, так как скорость релаксационных процессов резко возрастает и приводит к снижению эффекта действия напряжений. Поэтому считают нецелесообразным при сравнении сопротивляемости разрушению разных полимеров ускорять испытание путем чрезмерного повышения температуры.  [c.144]

Вытяжка этих полимеров вызывает образование кристаллитов, в которых цепи ориентированы параллельно прикладываемому напряжению. Таким образом, рост кристаллитов сопровождается распрямлением сложенных участков цепей, что вызывает релаксацию напряжения или быстрое удлинение образца при испытании на ползучесть [163, 164].  [c.79]


Характер релаксации одинаков для всех испытанных полимерных материалов—крутое падение напряжения в течение короткого времени (около 10 мин), за который первоначальная нагрузка падает на 60—80% общей величины релаксации. Затем идет замедление процесса релаксации. Этот второй этап продолжается при нормальной температуре примерно 1,2—1,5 ч. Затем релаксация еще больше замедляется и примерно через 5 ч от начала процесса для некоторых полимеров практически прекращается для других уменьшается на 70%. /  [c.93]

В вынужденно-эластическом и высокоэластическом состояниях с большими периодами релаксации, когда Тр = т, разрушение полимера определяется разрывом как химических, так и физических связей. При этом чем выше температура испытания и меньше скорость разрушения (низкие напряжения), тем больше вклад физических связей в развитие трещин разрушения. В соответствии с этим энергия активации с уменьшением напряжений снижается (см. прямые /, 2, 3 на рис. 2.39).  [c.101]

Для оценки релаксации напряжения образёц мгновенно деформируется на заданную величину и затем измеряется напряже-ние, необходимое для поддержания этой деформации, как функция времени. Такой вид испытания схематически изображен на рис. 1.1. Результаты испытаний выражают в виде графиков зависимости напряжения или отношения напряжения к заданной деформации (называемого релаксационным модулем) от времени. Данные о релаксации напряжения столь же важны для понимания механизма вязкоупругости полимеров, как и данные о ползучести. Однако определение релаксации напряжений не так широко используется экспериментаторами, как испытания на ползучесть. Это можно объяснить двумя причинами 1) эксперименты по оценке релаксации напряжения осуществить значительно труднее, чем по оценке ползучести, особенно для жестких материалов 2) данные о ползучести практически более важны при конструировании изделий и прогнозировании их поведения при длительно действующих нагрузках, чем данные о релаксации напряжения.  [c.16]

Аналогичные результаты получены Финдли для жесткого ПВХ [67]. Закаленные аморфные полимеры обычно имеют плотность на 10 —10" г/сл1 меньше, чем отожженные полимеры. Поэтому очевидно, что свободный объем является важнейшим фактором, определяющим скорость ползучести и релаксации напряжения в аморфных полимерах, находящихся в стеклообразном состоянии, особенно при больших длительностях нагружения. Отжиг может уменьшить ползучесть кристаллических полимеров аналогично тому, как это наблюдается для стеклообразных образцов [58, 64, 71]. Однако для кристаллических полимеров, таких, как ПЭ и ПП, и температура отжига, и температура испытаний лежали в области температур между и Т . Следовательно, для таких, полимеров причина снижения ползучести должна быть связана с изменениями степени кристалличности, вторичной кристаллизацией и изменениями морфологии кристаллитов, происходящими в процессе термообработки. Это значит, что уменьшение скорости ползучести или релаксации напряжения в результате отжига или других видов термообработки кристаллических полимеров обусловлено главным образом изменениями кристаллической структуры полимера, в то время как аналогичные эффекты в аморфных полимерах связаны главным образом с изменением свободного объема или плотности.  [c.66]

Динамические характеристики оптию-механических свойств полимеров в значительной мере могу т отличаться от статических из-за влияния временного фактора. Так, при действии кратковременных имульсных нагрузок процессы, связанные с регистрацией в модели оптической картины полос, длятся от нескольких микросекунд до сотен микросекунд. В этом случае обычные квазистатические испытания на ползучесть и релаксацию напряжения не могут отражать сути происходящих при динамическом воздействии явлений, протекающих в полимерном материале.  [c.254]

В клеевых швах одновременно развиваются два процесса рост прочности и жесткости полимера в результате доотверждеиия и релаксация остаточных напряжений. На несущую способность соединения в конечном итоге оказывает влияние соотношение между этими процессами и их взаимодействие с характером однородности и кои- центрации действующих напряжений. Так, например, при испытании на сдвиг при кручении напряжения однородны, концентрация их невелика, в связи с чем прочность образцов увеличивается во времени [3].  [c.481]


Смотреть страницы где упоминается термин Испытания полимеров на релаксацию напряжений : [c.81]   
Смотреть главы в:

Испытательная техника Справочник Книга 2  -> Испытания полимеров на релаксацию напряжений



ПОИСК



Испытание на релаксацию

Испытания на релаксацию напряжений

Напряжения релаксация

Полимерия

Полимеры

Релаксация



© 2025 Mash-xxl.info Реклама на сайте