Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные характеристики двухфазных потоков

В дальнейшем осреднение какой-либо переменной во времени основной характеристики двухфазного потока (ж, ср, р, lv., Ар) будем производить следующим образом  [c.157]

Это еще раз свидетельствует о необходимости учета закономерностей изменения основных характеристик двухфазного потока при построении структурных диаграмм.  [c.58]

Анализируя опытные данные, можно предположить, что коэффициент теплоотдачи в области улучшенного теплообмена слабо зависит от тепловой нагрузки и, по-видимому, в основном определяется гидродинамическими характеристиками двухфазного потока и физическими свойствами жидкости и пара.  [c.127]


На рис. 3.12 приведена основная гидродинамическая характеристика двухфазного потока, полученная  [c.49]

Основные интегральные характеристики двухфазного потока  [c.204]

Ниже этот метод будет приложен к исследованию основных суммарных гидравлических характеристик двухфазного потока, текущего в круглых трубах.  [c.163]

ОСНОВНЫЕ УРАВНЕНИЯ И ХАРАКТЕРИСТИКИ ДВУХФАЗНЫХ ПОТОКОВ  [c.6]

Следует также отметить, что приведенные выше результаты экспериментальных исследований структуры потока за сопловой решеткой не могут быть непосредственно использованы в расчетах многоступенчатых натурных турбин. В промежуточных ступенях турбин дисперсность влаги меньше, чем в описанных выше опытах, и рассогласования скоростей пара и капель по величине и направлению будут в общем случае иными (см. рис. 3-1). Поэтому разобранные исследования иллюстрируют в основном качественные характеристики двухфазного потока. Для определения количественных соотношений необходимо рассчитать движение капель в каналах решеток, их взаи-  [c.65]

Содержание книги [61], а также настоящей книги показывает, что значение-экспериментальных исследований потоков двухфазных сред весьма велико Дальнейшее развитие и совершенствование методов эксперимента представляет важную проблему газодинамики двухфазных течений. Методы экспериментальных исследований должны обеспечить 1) изучение процессов движения 2) проверку результатов теоретических исследований 3) определение характеристик, необходимых для расчета и проектирования систем, работающих на влажном паре. В настоящей главе в основном изложена методика и описаны приборы для исследований двухфазных потоков, использованные в работах МЭИ  [c.22]

Таким образом, создание и эксплуатация турбоустановок на АЭС требует также решения ряда сложных проблем газодинамики двухфазных потоков. К этим проблемам относятся возникновение влаги при дозвуковых и трансзвуковых скоростях течения образование жидких пленок и крупных капель движение влаги в проточных частях турбин и процессы взаимодействия влаги с рабочими лопатками влияние жидкой фазы на основные характеристики проточных частей турбин и влияние концентраций примесей в жидкой фазе на коррозию металла, особенно в зоне Вильсона. Решение этих проблем позволит оптимизировать проточную часть турбин, работающих во влажном паре, повысив их экономичность и надежность. В этой и следующей главах рассматриваются лишь наиболее характерные особенности течения влажного пара в] турбоустановках АЗС и методы удаления влаги в них. Исследования и расчеты турбин АЭС наиболее полно рассмотрены в [7.1—7.3].  [c.265]

Для обратимых равновесных потоков показатель изоэнтропы дает возможность определить соотношение между давлением и плотностью, скорость потока, термодинамическую скорость звука и ряд других газодинамических характеристик. Однако большинство встречающихся на практике процессов течения двухфазных сред происходит неравновесно. Степень неравновесности зависит от многих факторов градиентов скоростей фаз, дисперсности среды, времени процесса, начальных и граничных условий и т. п. Причем в зависимости от размеров и структуры жидкой фракции в процессе расширения двухфазной смеси возможны не только конденсация, но и испарение — подсушка среды. Кроме того, скорости фаз в потоках, как правило, различаются, что приводит к дополнительным потерям на трение, выделение тепла и соответственно рост энтропии, Очевидно, что в этих условиях использовать термодинамический показатель k нельзя и речь может идти лишь о показателе адиабаты, учитываюшем степень неравновесности и необратимости процесса. Если исключить из анализа явления, характерные и для однофазных сред потери в пограничном слое, потери от неравномерности поля скоростей в вязких средах и др., то основными причинами необратимости процессов в двухфазных потоках можно считать потери от механического взаимодействия теплообмена и массообмена при конечной скорости обменных процессов между фазами.  [c.73]


Основные характеристики потоков двухфазных жидкостей  [c.205]

В схеме на рис. 162, а статические давления измеряются в точках, лежащих на одном диаметре цилиндра, перпендикулярном оси основного потока в схеме на рис. 162, б — в наименьшем сечении труб Вентури. Выражение (Х1.44) представляет собой статическую характеристику идеального прототипа массового расходомера. В действительности наблюдаются значительные отклонения от линейности, вызванные неидентичностью потоков в ветвях и влиянием режимов течения. Для -измерений гетерогенных потоков схема на рис. 162, а непригодна из-за сепарации компонентов под действием центробежных сил. В расходомере, выполненном по схеме рис. 162, б, следует ожидать существенного влияния на коэффициент преобразования соотношения фаз, так как потери напора в двухфазных потоках резко зависят от отношения скоростей фаз. Ряд схем, аналогичных рассмотренным, приведен в [165]. Так как уравнение Бернулли, использованное для вывода (Х1.44), действительно только на установившихся режимах, то массовые расходомеры с датчиками переменного перепада давления непригодны для измерений в динамических режимах.  [c.382]

В лаборатории турбомашин МЭИ введены в эксплуатацию различные стенды влажного пара, ориентированные на экспериментальное изучение следующих основных задач I) механизма конденсации в равновесных и неравновесных течениях влажного пара при больших скоростях и, в частности, скачковой конденсации 2) механизма и скорости распространения возмущений в двухфазной среде и условий перехода через скорость звука 3) основных свойств дозвуковых и сверхзвуковых течений в каналах различной формы с подробным изучением волн разрежения и скачков уплотнения в эту группу включаются исследования основных энергетических и расходных характеристик сопл, диффузоров и других каналов 4) двухфазного пограничного слоя и пленок, образующихся на поверхностях различных форм 5) течений влажного пара в решетках турбин (плоских, прямых и кольцевых) с подробным изучением структуры потока, углов выхода, коэффициентов расхода и потерь энергии 6) структуры потока и потерь энергии в турбинных ступенях, работающих на влажном паре, с подробным изучением оптимальных условий сепарации влаги из проточной части и явлений эрозии.  [c.388]

Результаты проведенного эксперимента в основном подтверждают отмеченные особенности обтекания зондов потоком переохлажденного пара. Действительно, если предположить, что резкое возрастание Дро при уо>0 объясняется не процессами в сопле, а специфическими условиями обтекания носика зонда потоком двухфазной жидкости с крупными каплями, то конструктивно разные зонды должны иметь различные характеристики на влажном паре. Представленные на рис. 14-18 характеристики разных зондов отчетливо показывают, что интенсивность скачка Дро ири t/o = 0 и возрастание Дро при г/о>0 существенно зависят от формы приемника и конструктивной схемы зонда.  [c.408]

Рассмотрены физические модели течения в круглых, плоских и веерных струях, развивающихся в безграничном и ограниченном поперечном потоках. Приведены их осредненные и пульса-ционные характеристики. Даны методики расчета задач на начальном, переходном и основном участках струй несжимаемой жидкости, переменной плотности и двухфазных струй. Предложены модели выноса газообразной и твердой примесей из струи в поперечный поток.  [c.526]

Основные характеристики двухфазных потоков. Под двухфазными потоками согласно установившейс традиции асы будем понимать совместное течение жидкости и паровой (или ГУЗОВОЙ) фазы. Потоки жидкости с твердыми частицами (суспензии) и потоки газа с творды.мн частица.ми (запыленные потоки) здесь не рассматриваются. Формы движения двухфазных потоков значительно многообразнее, и их законы существенно сложнее, чем для однофазных сред. Во-первых, это связано с наличием второй фазы (например, пара), а во вторых, с тем, что силовые и тепловые взаимодействия возникают не только на границах потока с твердой стенкой, но также и на поверхностях раздела фаз внутри потока. В-третьих, сжимаемость паровой или газовой фазы значительно больше, чем сжимаемость жидкости. Двухфазный поток характеризуется большим количеством параметров, чем однофазный поток. Основные из них приводятся ниже.  [c.32]

В связи с тем, что аналитическое решение задачи о гидродинамике и теплообмене в двухфазных неравновесных потоках при современном уровне знаний представляет большие трудности и не получено даже для более или менее простых частных случаев, основными методами исследования закономерностей процессов в парогенерирующих каналах до настоящего времени остаются экспериментальные. Большое количество различных экспериментальных данных дает возможность представить качественно характер распределения основных характеристик двухфазного потока по длине парогенерирующего канала.  [c.66]

Существует много методов измерения распределения концентраций фаз в поперечном сечении потока например, измерение электроемкости газо- или парожидкостной смеси, электрозондирование потока, зондирование потока пробоотборником [9], про-светка потока узким пучком гамма- или рентгеновских лучей [10]. Из перечисленных способов исследования наиболее перспективным является метод просвечивания двухфазной смеси гамма- или рентгеновскими лучами, так как он позволяет получить наиболее полную информацию об основных характеристиках двухфазного потока без нарушения его структуры и режима течения.  [c.97]


Рис. 3.12. Основная гидродинамическая характеристика двухфазного потока для паро-водяной и паро-ртутной смесей [41] Рис. 3.12. Основная гидродинамическая характеристика двухфазного потока для паро-водяной и паро-ртутной смесей [41]
На рис. 3.1 приведена основная гидродинамическая характеристика двухфазного потока для пароводяной и парортутной смесей, движущихся в вертикальных трубах [11].  [c.57]

Экспериментальные исследования проведены в довольно узком диапазоне геометрических характеристик местных сопротивлений и основных параметров двухфазного потока, содержат методические неточности [1], а результаты опытов разных авторов иногда прямо противоположны [2 и 3]. Суш ествуюш ие методы расчета гидравлических потерь в местных сопротивлениях в большинстве случаев плохо согласуются с экспериментальными данными. Так, нормативный метод гидравлического расчета котлов [4], основанный па гомогенной модели двухфазного потока и использующий в большинстве случаев коэффициент местного сопротивления на однофазном потоке С1ф, может давать результаты, в 4 раза превышающие результаты опытов. Расчетные зависимости различных авторов, приведенные в [1], применимы только для расчета перепадов давления в случае резкого расширения двухфазного потока. Уравнения, полученные для расчета гидравлических потерь двухфазного потока при течении через внезапные сужения [2] и дифрагмы [5], имеют следующие общие недостатки потери в этих случаях рассматриваются лишь как результат внезапного расширения двухфазного потока от поджатого сечения струи до последующего сечения канала, а потери при сужении потока от входной кромки до поджатого сечения не учитываются. Кроме того, (истинное объемное газосодер-  [c.145]

Гл. 7 и 8 в наибольшей степени имеют прикладной характер. В гл. 7 вводятся основные количественные характеристики, обычно используемые при одномерном описании двухфазных потоков в каналах расходные и истинные паросодержания, истинные и приведенные скорости фаз, скорость смеси, коэффициент скольжения, плотность смеси. При рассмотрении методов прогнозирования режимов течения (структуры) двухфазной смеси акцент делается на методы, основанные на определенных физических моделях. Расчет трения и истинного объемного паросодержания дается раздельно для потоков квазигомогенной структуры и кольцевых течений. В гл. 8 описаны двухфазные потоки в трубах в условиях теплообмена. Приводится современная методика расчета теплоотдачи при пузырьковом кипении жидкостей в условиях свободного и вынужденного движения. Сложная проблема кризиса кипения в каналах излагается прежде всего как качественная характеристика закономерностей возникновения пленочного кипения при различных значениях  [c.8]

Изуч ение теплообмена в двухфазных потоках представляет собой весьма трудную задачу ввиду сложности гидродинамической структуры потока, взаимного, порой определяющего влияния теплообмена и гидродинамики, Случайных отклонений от гидродинамической и термодинамической неравновесности. Режимы течения определяются рядом факторов давлением, общим расходом потока и соотношением между фазами, свойствами фаз, тепловым потоком, предысторией потока и др. По имеющейся классификации основными режимами течения являются пузырьковый, снарядный, расслоенный, эмульсионный дисперсно-кольцевой и обращенный дисперсно-кольцевой (пленочное кипение недогретой жидкости). Четких границ между ними не наблюдается, и существуют целые области переходных режимов. Пока не имеется детальной информации для всех режимов течения по таким основным характеристикам потока, как распределение фаз, скоростей и касательных напряжений. Поэтому основой для понимания явления служат визуальные наблюдения и некоторые экспериментальные данные по распределению фаз, их полям скоростей, уносу и осаждению, гидравлическому сопротивлению и т. д. К настоящему времени накоплена достаточная информация о режимах течения адиабатных потоков, однако мало данных по диабатным (с подводом тепла) потокам при высоких давлениях, тепловых нагрузках и большом различии теплофизических свойств. Подавляющее большинство исследований выполнено на пароводяных и воздуховодяных смесях.  [c.120]

Приводится обоснование необходимости и результаты совместных исследований гидродинамических, теплообменных и массообменных характеристик двухфазных неравновесных потоков в парогенерирующих каналах. Доказывается, что совместные исследования распределений по длине канала давлений, истинных объемных наросодержаний, температур стенки и ядра потока, а также кратностей циркуляции жидкой фазы между ядром потока и пристенным слоем дают возможность оценить основные расчетные характеристики двухфазных неравновесных потоков в парогенерирующих каналах. Показана связь между структурой двухфазного потока в кризисном кипении в канале, а также связь между интенсивностью массообмена и кризисом теплообмена при кипении.  [c.285]

Проведено экспериментальное и теоретическое исследование гидравлических потерь и перепадов давления в основных видах местных сопротивлений при течении двухфазной смеси. Эксперилтенты проводились при течении пароводяной и воздухо-водяной смеси через диафрагмы и решетку, устанавливаемые в вертикальной необогреваемой трубе. Параметры пароводяной смеси изменялись в диапазоне давление р = (10—65) бар, скорость цирку.ттяции Юв2= 0.5—3) м/с, массовое расходное паросодержание зс=(0—100)%, воздухо-водяной смеси р = 5 бар, jOoj=(0.5—3) м/с, зс=(0—50)%. Поручены результаты по длине стабилизации двухфазного потока при p=(lQ—20) бар. Теоретическое исследование позволило на основе предложенной модели течения двухфазной смеси получить расчетные зависимости для потерь, перепадов давления и других характеристик в основных видах местных сопротивлений. Результаты расчетов по этим зависимостям хорошо согласуются с экспериментальными данными авторов и ряда других исследователей. Библ. —  [c.247]

В связи с существенной нестационарностью процесса при снарядном режиме не удалось воспользоваться основной си-стелюй уравнений двухфазного потока ( 7.2) для обобщения опытных данных. Сильные колебания расхода, давления, теплового потока от стенки привели к известным трудностям как первичной обработки опытных данных, так н их обобщению. Кроме того, попытка систематизировать опытные данные по коэффициенту перемежаемости р как функции режимных параметров не дали положительных результатов из-за низкой точности измерений пульсационных характеристик и их зависимости от геометрии магистралей установки. Поэтому использована гомогенная модель двухфазного потока, позволившая произвести обобщение в виде зависимости числа Стантона от числа Рейнольдса, вычисленных по физическим параметрам пара на линии насыщения и по скорости жидкости на входе в участок. Расход, давление, тепловой поток и те.мпература насыщения осреднены по времени в окрестности рассматриваемого  [c.215]


По вопросам исследования и расчета характеристик теплообмена и гидравлики в пучках труб опубликовано несколько обобщаюш их работ. В основном в них рассматриваются проблемы, относящиеся к течению в пучках однофазных потоков теплоносителей. Сравнительно слабо в литературе освещены теплообмен и гидравлическое сопротивление пучков труб при использовании двухфазных потоков, кипящего слоя, жидкометаллических теплоносителей, поверхностей нагрева с интенсификацией теплообмена и при фазовых превращениях теплоносителей.  [c.3]

В институте Тинцветмет при разработке и освоении процесса КФП проводился комплекс работ (лабораторных, полупромышленных, опытно-промышленных) по изучению механизма и кинетики процессов в сульфидно-кислородном факеле, аэродинамических характеристик двухфазных (шихтово-кислородных) струй и потоков и др. [3]. Указывалось, что при соответствующих аэродинамических условиях энергетическая длина факела, на которой в основном завершается тепловыделение в результате усвоения кислорода, составляет 6-11 калибров горелки. Высокая интенсивность химического реагирования в факеле свидетельствует о том, что удельную производительность печного агрегата кислородной плавки лимитирует процесс выпадения расплавленных частиц конденсированной фазы из факела, т.е. не энергетическая, а аэродинамическая длина этого факела. При исследовании динамической задачи о свободной двухфазной струе с учетом скольжения фаз разработан полуэмпирический метод расчета осевых скоростей шихтово-кислородного потока. С помощью ЭВМ получена также эмпирическая формула для определения максимальной длины выпадения частиц из шихтово-кислородного факела. Длина зависит от диаметра горелки и скорости смеси на выходе из нее. При этом получено, что успешное протекание процесса, когда время окисления шихты меньше времени ее пребывания в факеле, возможно при скорости истечения смеси из горелки < 15 м/с.  [c.106]

В лаборатории турбомашин МЭИ используются различные стенды влажнога водяного пара, ориентированные на изучение 1) условий подобия и моделирования двухфазных течений в различных каналах и в элементах проточной части турбин АЭС 2) механизмов скачковой и вихревой конденсации пара в соплах каналах и решетках турбин при дозвуковых и сверхзвуковых скоростях 3) влияния периодической нестационарности и турбулентности на процессы образования дискретной фазы, взаимодействия фаз и интегральные характеристики потоков 4) двухфазного пограничного слоя и пленок в безградиентных и градиентных течениях 5) механизма и скорости распространения возмущений в двухфазной среде, а также критических режимов в различных каналах в стационарных и нестационарных потоках 6) основных свойств и характеристик дозвуковых и сверхзвуковых течений в соплах, диффузорах, трубах, отверстиях и щелях 7) влияния тепло- и массообмена на характеристики потоков в различных каналах 8) течений влажного пара в решетках турбин с подробным изучением структуры потока и газодинамических характеристик 9) структуре потока, потерь энергии и эрозионного процесса в турбинных ступенях, работающих на влажном паре 10) рабочего процесса двухфазных струйных аппаратов (эжекторов i и инжекторов).  [c.22]

Основными ироблемами экспериментального исследования потоков двухфазной среды являются 1) опытное изучение физических процессов движения 2) проверка результатов теоретических исследований динамики двухфазных систем 3) получение структурных и интегральных характеристик потоков в различных каналах, соплах, решетках ступеней турбин и т. д.  [c.385]

До настоящего времени накоплено мало экспериментального материала по исследованию неподвижных и вращающихся решеток на влажном паре. Отсутствуют надежные данные, характеризующие структуру потока двухфазной среды, механизм образования потерь энергии, а также изменение основных аэродинамических характеристик решеток в достаточно широком диапазоне режимных и геометрических параметров. Особый недостаток ощущается в опытных и теоретическях исследованиях дисперсности и скоростей жидкой фазы в решетках турбинных ступеней. Для расчета экономичности проточных частей турбин, эрозии лопаток и сепарации влаги необходимо знать траектории движения капель, их взаимодействие с неподвижными и вращающимися лопаткамц, долю влаги, остающуюся на поверхностях в виде пленок, характер двил ения этих пленок под воздействием парового потока, центробежных и кориолисовых сил. Естественно, что отсутствие пе речис-лениых данных не позволяет решать задачи выбора оптимальных профилей сопловых и рабочих решеток, работающих на влажном паре. Следовательно, накопление опытных материалов, полученных методами дифференцированного изучения физических особенностей процесса, представляет большой теоретический и практический интерес.  [c.50]


Смотреть страницы где упоминается термин Основные характеристики двухфазных потоков : [c.206]    [c.137]    [c.276]    [c.5]    [c.72]    [c.365]    [c.3]    [c.401]    [c.309]   
Смотреть главы в:

Справочник по теплогидравлическим расчетам  -> Основные характеристики двухфазных потоков



ПОИСК



299 — Основные характеристики

299 — Основные характеристики характеристики

Двухфазные потоки

Характеристики двухфазного потока



© 2025 Mash-xxl.info Реклама на сайте