Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трение движения твердых тел

Трение движения твердых тел  [c.185]

Предположим теперь, что горизонтальная плоскость является негладкой. Рассмотрим влияние силы трения скольжения на движение твердого тела, если коэффициент трения скольжения равен /.  [c.36]

Сопоставление формул (10) и (5) приводит к выводу, что при наличии силы трения скольжения движение твердого тела будет  [c.37]

Плоское движение твердого тела. Однородный цилиндр находится на горизонтальной доске (рис. 5.31). Коэффициент трения между ними равен k. Доске сообщили ускорение а в горизонтальном направлении перпендикулярно оси цилиндра. Найти 1) ускорение  [c.168]


В зависимости от взаимных движений трение между твердыми телами бывает трех видов. В тех случаях, когда относительная скорость точек касания поверхностей тел, находящихся между собой в контакте, не равна нулю, возникает трение скольжения, или трение первого рода. Если относительная скорость точек касания поверхностей тел равна нулю и имеет место качение без скольжения, возникает трение качения, или трение второго рода 1). Наконец, рассматривают трение третьего рода, или трение верчения. В этом параграфе рассматривается лишь трение скольжения.  [c.244]

Когда нужно подчеркнуть, что при движении жидкости или газа или движении твердых тел в жидкости и газе необходимо учитывать силы трения и сопротивления среды, жидкость или газ называют вязкой средой.  [c.194]

Характер зависимости от скорости для сил трения между двумя твердыми телами и сил трения между твердым телом и жидкостью (или газом) оказывается совершенно различным. Наиболее существенным в этом различии является совершенно разное поведение тех и других сил при малых скоростях. Именно, в случае соприкосновения твердых тел, как бы ни была мала скорость их относительного движения, силы трения всегда имеют конечную величину и сохраняют конечную величину, когда относительная скорость движения падает до нуля. В случае же соприкосновения твердого тела с жидкостью или газом силы трения и сопротивление среды с уменьшением скорости также уменьшаются и падают до нуля, когда скорость тела относительно среды падает до нуля.  [c.195]

Силы жидкого трения (как силы трения, так и сопротивление среды) возникают при движении твердого тела в жидкости или газе, причем эти силы зависят от относительной скорости тела и среды и растут со скоростью сначала медленно, а затем быстро. Зависимость силы жидкого трения f от относительной скорости и выглядит примерно так, как показано на рис. 95. При малых относительных скоростях v зависимость силы трения от скорости можно выразить линейным законом  [c.196]

Трудно указать не только какую-либо машину или механизм, но и вообще движение твердых тел на земле (за исключением полета и плавания), где сухое трение не играло бы принципиальной роли. При этом сухое трение не всегда играет вредную роль, препятствующую движению. Очень многие движения без сухого трения со всеми его особенностями были бы невозможны. Примеров таких движений можно привести множество. Достаточно указать, что человек не мог бы ходить, если бы отсутствовали силы трения. Именно силы трения, возникающие при ходьбе между подошвами и землей (обычно силы трения покоя, так как нормально при ходьбе подошвы не скользят по земле), позволяют человеку двигаться. Там, где силы сухого трения являются причиной движения, обычно играют роль силы трения покоя, несмотря на то, что тела, между которыми возникают эти силы, движутся. В этом смысле особенно типичны случаи вращения и качения, причиной которых являются силы сухого трения.  [c.201]

При качении колес самодвижущихся экипажей (локомотива, автомобиля) дело обстоит совершенно таким же образом. В нормальных условиях качение колес происходит без скольжения, и поэтому силы, действующие со стороны земли на колеса, — это силы трения покоя. И именно на использовании особенностей сил трения покоя основано действие ведущих колес экипажа и принципы торможения. Эти вопросы будут изложены в главе о движении твердого тела ( 98), где они могут быть рассмотрены полнее.  [c.202]


В общем случае сопротивление при обтекании твердого тела потоком жидкости или при движении твердого тела в жидкости представляет собой сумму сопротивления трения и сопротивления давления (сопротивления формы). Неравномерность распределения давления по поверхности тела, неустановившийся характер движения в области отрывного течения сильно ограничивают круг задач, поддающихся аналитическому решению.  [c.257]

Глубинное вырывание. Этот вид повреждения поверхностей трения возникает при относительном движении твердых тел, когда образовав-  [c.89]

Известно, что любое движение твердого тела на плоскости можно воспроизвести путем качения без скольжения одной центроиды по другой. Построенные нами центроиды выполним в виде дисков или барабанов и закрепим их на валах. Соединим вал 1 с двигателем и путем нажатия обеспечим достаточную силу трения между дисками. Тогда при вращении вала 1 со скоростью (О, вал 2 будет вращаться со скоростью (Oj, а диски (центроиды) будут катиться друг по другу без скольжения.  [c.39]

В исключительных случаях может оказаться, что тело А заканчивается острием т, которым оно скользит по телу В наподобие волчка, скользящего по плоскости. В этом случае тело А всегда касается тела В одной и той же точкой т, и если относительная скорость точки т по отношению к В становится равной нулю и такой остается, то в этом случае применимы законы трения скольжения в состоянии покоя, и движение тела А относительно тела В есть движение твердого тела вокруг неподвижной точки.  [c.107]

Трение. В качестве примера движения твердого тела с трением мы рассмотрим следующую задачу.  [c.194]

Уравнения Эйлера, В динамике неизменяемых систем типичной задачей с тремя степенями свободы наряду с плоским движением является задача о движении твердого тела, закрепленного (без трения) в одной из своих точек О. Эта задача является одной из важнейших задач всей механики не только вследствие большого разнообразия конкретных вопросов, которые к ней приводятся, но также и благодаря тем теоретическим выводам, которые из нее могут быть получены.  [c.70]

Вращение волчка является примером движения твердого тела. Твердое тело представляет собой одну из систем, для которых голономные, не зависящие от времени связи уменьшают число степеней свободы до шести в рассматриваемом случае это число уменьшается до трех за счет требования, чтобы ножка волчка находилась в соприкосновении с землей в некоторой закрепленной точке. Если пренебречь силами трения, которые могут  [c.44]

Силы трения газа о поверхность цилиндрической детали невелики, но при отсутствии торцового трения могут создать крутящий момент в направлении движения потока. В состоянии равномерного движения деталь фактически вращается с окружной скоростью потока. Таким образом, имеет место движение твердого тела, ось которого вместе с центром тяжести осуществляет поступательное перемещение под действием приложенных сил.  [c.400]

В книге значительное место уделено исследованию колебаний жидкости в резервуарах и упругих систем с жидким заполнением. Для сил затухания в жидкости принята гипотеза Рэлея, по которой силы затухания пропорциональны скорости движения частицы жидкости, т. е. феноменологическая теория вязкой жидкости. До гипотезы Е. С. Сорокина в литературе долгое время господствовала гипотеза вязкого сопротивления внутреннего трения в твердых телах (гипотеза Кельвина—Фойгта), в соответствии с которой силы затухания пропорциональны скорости движения точек  [c.6]

Вообще говоря, направление сил статического трения в точках контакта заранее неизвестно, в то время как направление сил динамического трения однозначно определяется скоростями точек механической системы. Поэтому неопределенность направления сил трения в рассматриваемой статической задаче можно устранить предположением о том, каким движением твердое тело пришло в положение равновесия. Таким образом, определяются те силы трения, которые были достаточны.  [c.196]

Для того чтобы движение твердого тела не началось необходимо, чтобы ускорение центра масс и угловое ускорение равнялись нулю. Первое условие удовлетворяется выбором координат точки С согласно уравнению равновесия Т Ч- F i Fjj = О, где Т — сила трения, действующая на механическую систему. Поскольку величина и направление силы Т зависят от местоположения центра вращения С, согласно анизотропному закону трения (5.1) имеем  [c.224]

Трение является одним из проявлений контактного взаимодействия тел. Трение различают двух видов внешнее и внутреннее. Силы внешнего трения возникают на поверхности контакта двух тел приложены они к телам в соответствии с третьим законом Ньютона и направлены по касательной к поверхности контакта. Внутреннее трение — это тангенциальное взаимодействие между слоями одного и того же тела. Из всего многообразия внешнего трения мы рассмотрим лишь так называемое сухое трение, т. е. такое трение, которое наблюдается между сухими поверхностями твердых тел, когда одно твердое тело перемещается по поверхности другого. Из многообразия случаев внутреннего трения рассмотрим лишь жидкое трение, возникаю-ш,ее при относительном движении твердого тела в л идкости или газе.  [c.82]


Когда в какой-либо системе механическое движение не превращается в скрытое (а так часто бывает, например, при движении твердых тел, если трение слабо и действующие на систему силы создаются неподвижными телами), механическое движение не обнаруживает стремления к прекращению или к какому-либо предельному движению. Зная конфигурацию и скорости системы в любой момент, можно восстановить всю прошлую историю системы, шаг за шагом вычисляя ее предшествующие конфигурации и скорости. Это прошлое системы можно даже в точности воспроизвести на практике в обратном порядке. Если, сохранив конфигурацию, придать частицам системы обратные скорости, то она начнет двигаться, проходя в обратном порядке все свои прошлые состояния. Чисто механическое движение обратимо во времени.  [c.23]

Эти явления легко объяснить, исходя из основного закона движения твердого тела, закрепленного в точке. Так как моменты сил трения в подшипниках ничтожно малы и момент силы тяжести относительно точки закрепления равен нулю, то при движении прибора на вращающийся диск не действуют моменты внешних сил следовательно, вектор момента количества движения будет сохранять постоянное значение и неизменное направление в пространстве. Ось гироскопа вначале совпадала по направлению с моментом количества движения, и далее она будет совпадать с ним и сохранять неизменное направление в пространстве. По той же самой причине сохраняет направление своей оси и летящий волчок (см. рис. 182). Во время полета волчок свободен, момент силы тяжести относительно центра масс равен нулю, одна сила тяжести не может изменить вращение тела. Поэтому волчок в полете сохраняет постоянным момент количества движения по величине и направлению.  [c.241]

В п. 2.40 движение жидкой частицы было разложено на движение этой частицы как единого целого, подобно движению твердого тела, и на движение со скоростью чистого растяжения, в котором направление движения в каждой точке частицы нормально к некоторой поверхности второго порядка. Вязкость можно рассматривать как свойство, которое проявляется в виде действия сил, имеющих характер трения, на поверхности жидкой частицы, окруженной жидкостью. Ясно, что движение, подобное движению твердого тела, не вызывает относительных перемещений частиц и поэтому не может влиять на создание сил, имеющих характер трения. Поэтому в качестве естественной гипо-  [c.530]

В первом томе рассматриваются следующие разделы статики и кинематики система сходяптихся сил, произвольная плоская система сил, равновесие тел при наличии трения скольжения и трения качения, графическая статика, пространственная система сил, центр тяжести движение точки, поступательное движение и вращение твердого тела вокруг неподвижной оси, сложное движение точки, плоское движение твердого тела, вращение твердого тела вокруг неподвижной точки, общий случай движения твердого тела, сложение вращений твердого тела вокруг параллельных и пересекающихся осей, сложение поступательного и вращательного движений твердого тела.  [c.2]

Блестящих результатов в самых различных отделах механики достиг гениальный ученый Николай Егорович Жуковский (1847—1921), основоположник авиационных наук экспериментальной аэродинамики, динамики самолета (устойчивость и управляемость), расчета самолета на прочность и т. д. Его работы обогатили теоретическую механику и очень многие разделы техники. Движение маятника теория волчка экспериментальное определение моментов инерции вычисление пла нетных орбит, теория кометных хвостов теория подпочвенных вод теория дифференциальных уравнений истечение жидкостей сколь жение ремня на шкивах качание морских судов на волнах океана движение полюсов Земли упругая ось турбины Лаваля ветряные мельницы механизм плоских рассевов, применяемых в мукомольном деле движение твердого тела, имеющего полости, наполненные жидкостью гидравлический таран трение между шипом и подшипником прочность велосипедного колеса колебания паровоза на рессорах строительная механика динамика автомобиля — все интересовало профессора Жуковского и находило блестящее разрешение в его работах. Колоссальная научная эрудиция, совершенство и виртуозность во владении математическими методами, умение пренебречь несущественным и выделить главное, исключительная быстрота в ре-щении конкретных задач и необычайная отзывчивость к людям, к их интересам — все это сделало Николая Егоровича тем центром, вокруг которого в течение 50 лет группировались русские инженеры. Разрешая различные теоретические вопросы механики, Жуковский являлся в то же время непревзойденным в деле применения теоретической механики к решению самых различных инженерных проблем.  [c.16]

Рассмотрим движение твердого тела, закрепленного на неподвижной оси, вокруг которой оно может свободно вращаться (рис. 193) точка О — след этой оси. К одной из точек тела А приложена внешняя сила F. Кроме внешней силы F, на тело действуют и силы со стороны связей (реакции связей) — в пашем случае давление подш1шников, в которых закреплена ось тела. Мо это давление нормально к оси, если силы трения отсутствуют. Поэтому если мы выберем ось Гфа1цения за ось моментов, то момент сил реакции относительно этой оси будет равен нулю. Момент относительно оси враще- Рис. 193, ния дает только внешняя сила F. Разбив  [c.403]

При каком движении твердого тела по шероховатой поверхности силы трения скол1. кения не совершают работу  [c.223]

Основополагающим трудом по гидравлике считают сочинение Архимеда О плавающих телах , написанное за 250 лет до нашей эры и содержащее его известный закон о равновесии тела, погруженного в жидкость. В конце XV в. Леонардо да Винчи написал труд О движении воды в речных сооружениях , где сформулировал понятие сопротивления движению твердых тел в жидкостях, рассмотрел структуру потока и равновесие жидкостей в сообщающихся сосудах. В 1586 г. С. Стевин опубликовал книгу Начало гидростатики , где впервые дал определение силы давления жидкости на дно и стенки сосудов. В 1612 г. Галилей создал трактат Рассуждение о телах, пребывающих в воде, и тех, которые в ней движутся , в котором описал условия плавания тел, В 1641 г. его ученик Э. Торричелли вывел закономерности истечения жидкости из отверстий. В 1661 г. Б. Паскаль сформулировал закон изменения давления в жидкостях, а в 1687 г. И. Ньютоном были установлены основные закономерности внутреннего трения в жидкости. Эти ранние работы были посвящены отдельным вопросам гидравлики и только в XVIII в. трудами членов Российской Академии наук М. В. Ломоносова, Д. Бернулли, Л. Эйлера гидравлика сформировалась, как самостоятельная наука.  [c.7]

При обтекании твердого тела потоком жидкости или при движении твердого тела в покоящейся жидкости возникают гидравлические сопротивления. Эти сопротивления проявляются в непосредственной близости от самого тела и определяются действием сил вязкости и сил, оп-ределяемьгх разностью давления перед обтекаемым телом и за ним. Соотношение между силами трения и давления может быть различным, в зависимости от формы твердого тела, направления движения потока, обтекающего тело, и ряда других факторов.  [c.227]

Теория эквилибристической стойки, или гироскопа Жерва (Оегуа ). Предыдущие вычисления могут быть приложены к движению твердого тела вращения, подчиненного связям без трения, выражаемым аналитически уравнением вида С = /(6), где С — высота центра тяжести над неподвижной плоскостью и 6— угол, образуемый осью вращения с вертикалью. Это как раз имеет место в описываемо.м ниже приборе, который подчинен связям, имеющим на первый взгляд совершенно другую природу, чем рассмотренные выше.  [c.215]


Статическое трение. — Пусть твердое тело, находящееся под действием данных сил, опирается на неподвижную поверхность, так что вызывает постоянную нормальную реакцию этой последней. Если, кроме того, сила, действующая тангенциально к поверхности, стремится заставить тело скользить по ней, возникает касательная реакция поверхности, прямо противоположная силе. Эта реакция препятствует скольжению тела и возрастает-вместе с касательной активной силой до предельного максимума, после чего начинается скольжение. Наибольшую касательную реакцию Т называют трением при начале движения (froitement аи depart ). На основании опытов Кулона и Морена, трение при начале движения подчиняется приближенно следующим законам  [c.324]

Так как мы допустили, что точка соприкосновения ножки волчка с плоскостью не лежит на оси (OgS O) и что, с другой стороны, движение твердого тела мало отличается от простого вращения с значительной угловой скоростью около оси Gz, то очевидно, что трение, действуя в любой момент в направлении, прямо противоположном скорости точки волчка, приходящей в соприкосновение с плоскостью, стремится уменьшить величину л угловой скорости вращения. Если предположим для определенности г > О, то будем иметь Дг < О и потому на основании соотношения (44 ) будет  [c.216]

Правда, оказалось также, что в применении принципа надо соблюдать величайшую осторожность, дабы не впасть в ошибку, а именно при формулировании условий для возможных перемещений. Так, например, применяя принцип наименьшего действия к движению твердого тела в жидкости при отсутствии трения и вращения, недостаточно оставить неизменными начальное и конечное положения твердого тела необходимо оставить без изменений также начальное и конечное положения всех частиц жидкости. Ошибку другого рода сделал Г. Герц, когда он во введении к своей механике применил принцип наименьшего действия к движению шара, катящегося по горизонтальной плоскости, и при этом для возможных перемещений поставил условия, недопустимые для неголономной системы. Заслуга разъяснения этого обстоятельства принадлежит в первую очередь О. Гёльдеру и А. Фоссу.  [c.586]

Все эти примеры ясно показывают, что мир без трения покоя — есть мир воображаемый, не существующий, резко отличный от реального мира, с бесчисленными проявлениями трения покоя. Мы видели выше, что при внутреннем трении и явлениях сопротивления движению твердых тел, на нем основанных, сила трения пропорцио- Нальна скорости движения, уничтон аясь вместе с ней. Поэтому наличие статического трения указывает безошибочно на явления истинно внешнего трения, явления существенно иной природы, нежели явления внутреннего трения эти два вида трения должны подчиняться различным закономерностям.  [c.109]

КОЛЕБАНИЯ (вынужденные [возникают в какой-либо системе под влиянием внешнего воздействия переменного пружинного маятника (характеризуется переходным режимом и установившимся состоянием вынужденных колебаний резонанс выявляется резким возрастанием вынужденных механических колебаний при приближении угловой частоты гармонических колебаний возмущающей силы к значению резонансной частоты) электрические осуществляют в электрическом колебательном контуре с включением в него источника электрической энергии, ЭДС которого изменяется с течением времени] гармонические относятся к периодическим колебаниям, а изменение состояния их происходит по закону синуса или косинуса затухающие характеризуются уменьшающимися значениями размаха колебаний с течением времени, вызываемых трением, сопротивлением окружающей среды и возбуждением волн когерентные должны быть гармоническими и иметь одинаковую частоту и постоянную разность фаз во времени комбинационные возникают при воздействии на нелинейную колебательную систему двух или большего числа гармонических колебаний с различными частотами кристаллической решетки является одним из основных видов внутреннего движения твердого тела, при котором составляющие его частицы колеблются около положений равновесия крутильные возршкают в упругой системе при периодически меняющейся деформации кручения отдельных ее элементов магнитострикционные возникают в ферромагнетиках при их намагничивании в периодически изменяющемся магнитном поле модулированные имеют частоту, меньшую, чем частота колебаний, а также определенный закон изменения амплитуды, частоты или фазы колебаний неавтономные описываются уравнениями, в которые явно входит время некогерентные характерны для гармонических колебаний, частоты которых различны незатухающие не меняют свою энергию со временем нормальные относятся к гармоническим собственным колебаниям в линейных колебательных системах  [c.242]

Дислокации и физические свойства кристаллов. Д, влияют в первую очередь на механич. свойства твёрдых тел (упругость, пластичность и прочность), для к рых их присутствие часто является определяютцим. Упругие поля Д. изменяют оптич. свойства кристаллок, на чём основан метод наблюдения изолированных Д. в прозрачных материалах (рис.. 3). Т. к. упругие нанри-жения сравнительно легко вовлекают Д. в движение, то в случае интенсивных тепловых колебаний кристалла (см. Колебания кристаллической решётки) Д. периодически смещаются из своих равновесных положений и часть энергии колебаний идёт на их перемещение. Но т. к. движение Д. сопровождается опредол. торможением, то Д. рассеивают колебат. энергию, давая ощутимый вклад во внутреннее трение в твердых телах.  [c.638]

Рассматриваются следующие разданы статики и кииематики система сходящихся сип, произвольная плоская система сил, равноАесне тел при наличии /трения скольжения и трония качения, графическая статика, пространствеМная система сил, движение точки, поступательное движение и вращение твердого тела вокруг неподвижной оси и неподвижной точки, общий случай движения твердого тела, сложение вращений твердого Тела вокруг параллельных и пересекающихся осей, сложение поступательного и вращательного движений твердого тела, Краткие сведения из теории даются в конспективной форме.  [c.2]

Впервые общая картина поведения различных гироскопических систем с быстро вращаюищмся симметричным ротором была, как уже упоминалось, обрисована в классических докладах Л. Фуко, а затем — в фундаментальной монографии В. Томсона и П. Тэта. Следующим шагом в развитии механики гироскопических устройств, позволившим перейти к количественному изучению их движения, был четырехтомный труд Ф. Клейна и А. Зоммер-фельда . Наряду с подробным изложением случаев интегрируемости уравнений движения твердого тела здесь впервые четко формулируется понятие <бкстрого динамически симметричного гироскопа, указывается, что он может совершать псевдорегулярную и вынужденную прецессию, и даются обоснованные количественные оценки угловых ошибок, с которыми следует Считаться, полагая, что вектор кинетического момента гироскопа совпадает с осью его фигуры, т. е. пользуясь допущением прецессионной теории. Авторы впервые изучают влияние трения в опоре и сопротивления среды на движение быстро вращающегося гироскопа. В четвертом томе этой работы имеются также результаты исследования различных конкретных гироскопических устройств, в частности, гиростабилизаторов непосредственного действия, о чем будет сказано особо.  [c.168]

Движение твердого тела около неподвижной точки является классической проблемой теоретической механики, но известные случаи Эйлера, Лагранжа и Ковалевской исследованы при весьма существенных ограничениях, налагаемых на действующие силы. Практическая гироскопия наших дней потребовала развития теории движения гироскопа при наличии сил сухого и гидродинамического трения, потребовала учета масс и моментов инерции механизмов подвески, вычисления реальных уходов осей симметрии гироскопов и создания теории сложных гироскопических систем. Мы сошлемся на монографию академика А. Ю. Ишлинского , содержание которой в значительной мере обусловлено новыми задачами гироскопии в связи с разработкой систем управления движущихся объектов (ракет, самолетов, судов и т. п.).  [c.32]

Что касается дифференциа-1ьных уравнений движения твердого тела, то они и в задаче с трением выражаются формулами (5), так как силы трения не влияют на главный момент всех сил, действующих на рассматриваемую систему. К1ияние этих сил на движение тела заключается только в изменении течения (м, и, ю ), вместе с которым изменяются и Р, Q, В.  [c.279]

Поэтому предиетом теоретических исследиваний счужила сначала значительно более простая задача о движении твердого тела в жидкости без трения (несжимаемой и однородной). Но именно в этом случае я  [c.122]


Смотреть страницы где упоминается термин Трение движения твердых тел : [c.13]    [c.7]    [c.173]    [c.203]    [c.126]    [c.153]    [c.288]   
Смотреть главы в:

Что такое трение Изд.2  -> Трение движения твердых тел



ПОИСК



Движение твердых тел

Трение движения

Трение твердых тел



© 2025 Mash-xxl.info Реклама на сайте