Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон Стокса и его приложения

Закон Стокса и его приложения  [c.29]

В качестве простого примера применения этих соотношений покажем, как можно вывести закон Стокса (2.6.3), хотя, разумеется, реальное значение этих соотношений более важно в сложных случаях, когда получение решений в замкнутой форме невозможно. Рассмотрим сферу с центром в начале координат, обтекаемую жидкостью с постоянной скоростью и вдоль оси X, Чтобы сфера находилась в покое, в направлении —х должна действовать некоторая сила. В результате возмущение, обусловленное удерживанием сферы в покое, будет влиять на основное течение. Бюргере предположил, что вид этого течения не будет сильно отличаться от вида течения, генерируемого точечной силой, приложенной в начале координат. Тогда компонента которая в данном случае отрицательна, создает поле скоростей, описываемое уравнениями (3.4.31) — (3.4.33). Если рассматривать сферу произвольного радиуса а, наличие которой вызывает силу, то можно потребовать, чтобы средняя величина скорости U и, v,w) исчезала на поверхности. Вследствие симметрии средние величины v и IV будут автоматически удовлетворять этому условию. Что касается U, запишем  [c.104]


Этот вывод может быть непосредственно получен из классической гидродинамики по аналогии с законом Пуазейля. Однако приложение уравнений Стокса-Навье, дающих более б.аизкое приближение к аналитическому подтверждению правильности равенства (1), возможно только в крайне идеализированном случае медленного движения (пренебрегаем величинами инерции) вязкой жидкости в сети параллельных круговых трубок (О. Emersleben, Phys. Zeits., 26, 601, 1925).  [c.58]


Смотреть страницы где упоминается термин Закон Стокса и его приложения : [c.85]    [c.133]    [c.31]   
Смотреть главы в:

Что такое трение Изд.2  -> Закон Стокса и его приложения



ПОИСК



Закон Стокса

Стокс



© 2025 Mash-xxl.info Реклама на сайте