Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Автоматизация управления большими системами

Автоматизация управления большими системами  [c.2]

АВТОМАТИЗАЦИЯ УПРАВЛЕНИЯ БОЛЬШИМИ СИСТЕМАМИ  [c.258]

Высокая производительность этих машин достигается широким применением автоматического и централизованного управления отдельными механизмами и целыми группами основного и вспомогательного оборудования. Стремление сократить потери на трение в узлах машин, простои и затраты на ремонт, вызываемый износом и повреждением поверхностей трения, а также трудность обслуживания многочисленных смазываемых точек, многие из которых расположены в труднодоступных местах, привели к широкому применению на современных металлургических заводах автоматических централизованных систем смазки, обеспечивающих длительную и бесперебойную работу металлургического оборудования при незначительных затратах на обслуживание этих систем. Благодаря применению централизованной смазки для большинства поверхностей трения удается обеспечить регулярную подачу смазочного материала при экономном его расходе, значительно повысить долговечность машин, сократить расход энергии, необходимой для привода машин, и снизить затраты на ремонт, причем расходы на установку централизованных систем смазки быстро окунаются за счет сокращения простоев и расходов на содержание оборудования. Автоматизация управления централизованными системами смазки, обслуживающими большое количество смазываемых точек, обеспечивает надежную и бесперебойную подачу необходимого количества смазочного материала к поверхностям трения. Немногочисленный персонал, обслуживающий эти системы, следит только за их непрерывной работой, добавляет смазочный материал и производит 1 3  [c.3]


Большое перспективное значение имеют работы по созданию станов поперечной прокатки для экономичного производства трубчатых изделий в машиностроении станы изготовлены по принципиально новым технологическим и конструктивным схемам, для автоматизации управления ими применяются сложные следящие электрогидравлические системы и логические элементы.  [c.236]

В тепловозах обычно применяются генераторы постоянного тока и сериесные тяговые двигатели. Такая система наиболее просто и надёжно обеспечивает большую пусковую силу тяги, плавное регулирование скорости и автоматизацию управления.  [c.574]

В технической кибернетике появилось новое, прогрессивное направление, предоставляющее большие возможности для значительного упрощения задачи автоматизации. Речь идет о самообучающихся (самонастраивающихся, самоорганизующихся, самосовершенствующихся) системах, применение которых не связано с необходимостью раскрытия физической сущности происходящих в технологическом процессе явлений и определения взаимной связи между параметрами. Для использования этих систем достаточно накопить статистические данные о процессе, которые после сравнительно несложной обработки (оптимизации) могут быть непосредственно использованы для автоматизации управления. В отличие от систем с обратной связью, в которых информация, необходимая для корректировки программы, получается на основе контроля изделия и, следовательно, необходимые действия предпринимаются только после возникновения в изделии отклонений, новый метод основан на измерении параметров, влияющих на протекание процесса, что позволяет вести управление на основе предугадывания , не допуская отклонений в характеристиках изделия.  [c.122]

Автоматизация пусковых режимов энергоблока приводит к повышению экономичности благодаря сокращению времени пуска, что уменьшает расход топлива, электроэнергии, теплоты и других составляющих потерь на пуск, обеспечивает сохранность и долговечность работы оборудования и, например, только по турбинной установке дает повышение КПД энергоблока на 0,2— 0,3 %. Эффект от автоматизации пусков энергоблока делится примерно поровну между системой управления и системой контроля и, естественно, он тем выше, чем больше число пусков энергоблока.  [c.486]

Описанная система автоматизации управления станка при большом объеме программирования применима не только на токарно-карусельных станках, но и на станках других типов для автоматизации сложных операций механической обработки.  [c.383]

Необходимость автоматизации переключения передач, в первую очередь, возникает для коробок передач автомобилей-самосвалов большой грузоподъемности и городских автобусов, которые работают с частыми остановками и требуют больших физических усилий для управления. Автоматические системы переключения применяются также на легковых автомобилях главным образом высшего класса. Кроме облегчения управления они повышают плавность хода, так как исключают рывки, возникающие при ручном переключении.  [c.148]

Приведенные данные свидетельствуют о том, что при создании комплексных систем управления необходима интеграция большого числа совместимых вычислительных систем различного Класса (от микроЭВМ до мега-мини-ЭВМ). Невозможность использования какого-либо подкласса ЭВМ в системе управления в значительной мере снижает эффективность, не обеспечивает комплексности автоматизации управления.  [c.41]


Автоматизация сложных машин и включение в их системы управления большого числа датчиков создают для этого более благоприятные условия.  [c.190]

Комплексная автоматизация, помимо централизованного управления автоматизируемой системой, часто требует осуществления непосредственных автоматических связей между пространственно разделенными объектами, расположенными на большом расстоянии друг от друга. Такие связи также могут быть рационально выполнены только с помощью средств телемеханики. Указанное непосредственное соединение автоматики и телемеханики получило название телеавтоматики.  [c.4]

В последнее время появилось большое количество моторных автоматов, объединяется управление винтом и газом в один рычаг, разрабатываются и внедряются системы полной автоматизации управления винтомоторной группой в одном-двух рычагах.  [c.359]

Сложность управления эксплуатационной работой железнодорожного транспорта, постоянно возникающие в оперативной обстановке новые нестандартные ситуации, которые необходимо быстро оценить и принять регулировочные меры, наличие больших коллективов работников, организующих и обеспечивающих перевозочный процесс, — все это приводит к заключению, что в перспективе, в условиях высокого уровня автоматизации управления народным хозяйством страны, диспетчерская система оперативного управления эксплуатационной работой железных  [c.17]

Структура автоматизированной системы управления технологическим процессом (АСУ ТП) и ее место в общей системе управления предприятием зависят от вида последнего, разновидности технологического объекта и используемых средств контроля и автоматизации. Среди промышленных предприятий наибольшей общностью технологического оборудования, используемых средств автоматизации и структур управления обладают тепловые и атомные электрические станции, на которых наиболее сложными технологическими объектами являются энергоблоки, включающие в себя котлы, реакторы, турбогенераторы и вспомогательное оборудование. Высокие скорости и параметры теплоносителя давление достигает 36 МПа, температура 545 °С), большие единичные мощности, непрерывный характер производства обусловили необходимость создания для ведения технологических процессов энергоблоков одной из наиболее сложных в промышленности систем управления. Так, система управления энергоблоком 800 МВт включает в себя более 1600 контролируемых па-  [c.209]

Область автоматизации Степень заводской автоматизации в большой степени зависит от потребностей экономической деятельности. Степень автоматизации и способ управления ею изменяются в зависимости от продукции, технологического процесса, потока материалов через производственное оборудование и многих других факторов. Проект будет также зависеть от того, начинаете ли вы обустраивать новый завод с самого начала или же перестраиваете уже существующее производство. Возникают дополнительные сложности при сохранении прохождения прежнего процесса во время установки новой системы.  [c.274]

Металлорежущие станки с системами ЧПУ (числового программного управления) применяют как для выполнения простых операций (сверление отверстий, обтачивание валов), так и для обработки сложных фасонных деталей. Системы ЧПУ обеспечивают высокий уровень автоматизации станков, включая автоматическую смену режущих инструментов и заготовок, изменение режимов резания, получение размеров поверхностей деталей. Станки с ЧПУ имеют большую производительность, чем универсальные станки. Станки  [c.291]

Наличие большого объема информации о технологическом процессе, о состоянии среды, об относительном расположении в пространстве объектов манипулирования открывает широкие возможности автоматизации разнообразных операций, включая такие тонкие, как сварка элементов сложной формы, сборка узлов с компактным расположением деталей. При этом робототехническая система выбирает нужные детали из полного комплекта, поступающего на рабочую позицию, регулирует транспортные потоки, В конечном счете именно такие робототехнические системы окажутся элементами, связываюш,ими отдельные технологические операции в единую цепь полностью автоматизированного производства. Здесь, говоря об автоматизации производства, мы имеем в виду не те узкоспециализированные машины-автоматы, которые создаются для выпуска определенного вида продукции. Речь идет о широком использовании универсального оборудования с числовым программным управлением, переналадка которого сводится, по сути дела, к смене программы работы.  [c.11]

Воистину революционную роль в системах управления автоматизацией производства сыграло появление ЭВМ. С помощью ЭВМ стал возможен анализ многозвенных, с большим числом степеней свободы механизмов, решение задач оптимального синтеза как отдельных механизмов, так и сложных машин автоматического действия, решение задач проектирования многокритериальных и многопараметрических машинных устройств, программное управление большинством современных машин, управление новыми машинами с устройствами биомеханического вида типа манипуляторов, роботов, шагающих машин и др.  [c.13]

В условиях автоматизированного производства все больше внедряются комплексные линии неразрушающего контроля качества изделий. Особенностью построения и применения этих линий является сочетание различных физических методов для одновременного измерения нескольких характеристик качества изделий в потоке их производства при полной автоматизации процессов контроля и сортировки. При создании таких линий по единому типовому проекту значительно упрощается обслуживание системы контроля, сокращаются производственные площади на участках отделки и появляется возможность перейти к автоматическому управлению технологическим процессом по результатам оценки качества изделия [2].  [c.323]


Десятая пятилетка в развитии энергосистем характеризуется дальнейшим развитием автоматизации диспетчерского управления и началом работ по автоматизации организационно-хозяйственного управления. Доля задач организационно-хозяйственного управления в 1980 г. достигла 60%. Наибольшее количество автоматизировано подсистем реализации энергии. В подсистеме производственно-технической деятельности решались группы задач расчета технико-экономических показателей (ТЭП) и надежности работы оборудования и по инженерным расчетам. Большой объем задач решается в подсистеме управления энергоремонтом, в частности расчеты годовых графиков капитальных ремонтов, трудозатрат, сетевых графиков ремонтов и др. В подсистеме технико-экономического планирования автоматизированы расчеты и анализ ТЭП работы энергетической системы, анализ реализации, себестоимости и прибыли. Успешно решаются в АСУ энергосистем задачи по учету материальных ресурсов, учету и анализу Кадров, труду и расчету заработной платы и др. К концу 1980 г. в управляющих вычислительных центрах (УВЦ) энергосистем было установлено 135 ЭВМ третьего поколения и 49 ЭВМ второго поколения. Средний годовой экономический эффект от внедрения АСУ в одной энергосистеме в десятой пятилетке составлял около 200 тыс. руб.  [c.343]

Весьма широко применяются электрические системы при автоматизации технологических машинных процессов в качестве основных элементов автоматических, контрольных, управляющих и регулирующих устройств и систем. Эти системы обладают возможностью управления с любых больших расстояний, что позволяет органы управления, контроля и регулирования располагать за пределами машины в любом месте. Электрическими системами легко осуществляется также централизация управления производственными и технологическими процессами.  [c.27]

Поистине революционную роль в системах управления и автоматизации производства сыграло появление математических счетно-решающих машин и устройств. Их спектры оказались безгранично большими, чем спектры человека. Но, может быть, самое главное заключается в том, что с помощью этих машин стало возможным заменить человека не только в процессах управления машинами, но и в выполнении многих других интеллектуальных функций, требующих решения сложнейших логических задач. С помощью этих маШин стали возможными анализ многозвенных, с большим числом степеней свободы механизмов, решение задач оптимального синтеза как отдельных механизмов, так и сложных машин и систем машин автоматического действия, решение задач проектирования многокритериальных и многопараметрических машинных устройств, программное управление большинством современных машин, управление новыми машинами с устройствами биомеханического вида типа манипуляторов, роботов, шагающих и других машин.  [c.134]

В процессе подготовки инженерных кадров в настоящее время в вузах большое внимание уделяется современной- вычислительной технике и ее применению в решении научно-технических задач. Инженер настоящего и будущего должен значительную часть Своей работы выполнять с помощью различных автоматизированных систем, построенных на базе ЭВМ и микропроцессоров. Поэтому в учебные планы всех технических специальностей вводятся курсы по системам автоматизации управления, проектирования, научных исследований, технологических процессов и т. п. Большинство специальностей имеют Специализацию по САПР (системам автоматизированного проектирования), АСНИ (автоматизированным системам научных исследований) и микропроцессорам.  [c.3]

Соответственно с ростом перевозочной работы расширяется и совершенствуется производственная база судостроения, проводится типизация судов и унификация судовых конструкций, осуществляется сборка судовых корпусов из укрупненных элементов (секций, блоков), монтируемых вместе с элементами судового оборудования непосредственно в заводских цехах до подачи на стапели. Работы Г. В. Тринклера, Д. Б. Тана-тара, В. А. Ваншейдта, М. И. Яновского и других исследователей, конструкторов и технологов во многом способствовали производственному и эксплуатационному освоению судовых дизель-редукторных, дизель-электрических и паротурбинных силовых установок большой мощности. На основе опыта изготовления судовых паровых турбин и авиавдонных газотурбинных двигателей были построены первые судовые газовые турбины, особенно перспективные в применении к судам на подводных крыльях и на воздушной подушке. С 60-х годов по мере развития отечественной электронной промышленности и совершенствования судовых паровых котлов, двигателей, генераторов, рулевых и швартовочных устройств, погрузочно-разгрузочных механизмов и пр. все шире стали использоваться на судах системы централизации и автоматизации управления и контроля, которые значительно улучшают эксплуатационные качества судов, повышают производительность труда судовых команд и освобождают их от многих трудоемких и тяжелых работ.  [c.307]

Роботизация удовлетворяет большинству перечисленных требований и имеет следующие достоинства по сравнению с обычными способами автоматизации механообрабатывающего производства способствует развитию унификации средств технологического оснащения и методов управления производственными системами способствует более широкому применению принципов типизации технологических процессов и операций обеспечивает большую гибкость производственных систем снижает затраты на проектирование и изготовление оборудования для автоматизированных производств, так как в РТК можно применять универсальные промышленные роботы, серийно выпускаемые промышленностью РТК достаточно легко объединяются с АСУ ТП и АСУП. Помимо этого роботизация в ряде случаев является единственно доступной и быстро осуществимой формой автоматизации процессов механической обработки деталей.  [c.509]

Казанская расширенная операционная система (КРОС) (расширяет возможности ОС ЕС в направлении большей автоматизации управления функционированием ЭВМ)  [c.177]

Один из этих стереотипов, как видно из сказанного, состоит в рассмотрении АСУ как системы чисто технической, т.е. в ограничении собственных задач лишь критериями собственно технической целесообразности. Отмеченное выше отставание внедрения от разработок в большой степени обязано подобным установкам авторов. Нередко безукоризненные в техническом и математическом отношении решения оказываются несовместимыми с социальньми и психологическими особенностями организации. Подобно тому, как когда-то начался массовый поворот конструкторов к эргономическим аспектам эффективности своей продукции, так и сейчас требуется изменение ориентаций проектировщиков АСУ в сторону социальных аспектов эффективности автоматизации управления.  [c.131]

На международной выставке ЛАеталло-обработка-84> демонстрировалось большое количество многоцелевых станков (обрабатывающих центров) отечественного производства. В табл. 11 приведены данные технической характеристики некоторых из демонстрировавшихся станков. Все эти станки предназначаются для обработки корпусных деталей. На станках можно производить сверление, зенкерование, растачивание отверстий, нарезание резьб, фрезерование плоскостей и фасонных поверхностей и другие с высокой точностью обработки и высокой производительностью. Эти станки характеризуются высокой степенью автоматизации управления, диагностирования, загрузки — выгрузки обрабатываемых деталей, смены приспособлений-спутников, что позволяет встраивать их в гибкие производственные системы.  [c.182]


Большое внимание уделяется автоматическому управлению поточно-транспортных систем, радиоуправлению кранами, автоматизации управления контейнерными кранами, применению ЭВМ для управления транспортными узлами и конвейерными системами, а также максимальной унификации и стандартизации узлов и деталей электродвигателей, аппаратов, коммутационной аппаратуры и схем. Перечисленные направления не исчерпывают всех тенденций в развитии и совершенствовании электрообрудования подъемно-транспортных машин, а только определяют главнейшие из них.  [c.4]

Работы по созданию мини-ЭВМ в СССР и странах социалистического содружества, которые сконцентрировались в рамкам СМ ЭВМ, в настоящее время являются основой создания систем автоматизации управления и обработки информации во всех отраслях народного хозяйства. Это определяется прежде всего тем, что СМ ЭВМ объединяют в рамках одного семейства базовые модели ряда архитектурных линий 8-, 16- и 32-разрядных процессоров с производительностью до 1—5 млн. операций (со спецпроцессором до 10—70 млн. операций/с). Развитое периферийное оборудование, базовое программное обеспечение, технические и программные средства для сетевой телеобработки удовлетворяют широкому спектру требований на всех уровнях комплексных интегрированных систем управления объектами. Уже накоплен большой опыт по созданию АСУ ТП, АСУП, САПР, АСУ контроля и измерения, управления качеством, автоматизации научного эксперимента, управления на транспорте, в системах связи и т. д.  [c.3]

Наивысщей степенью автоматизации всего мащиностроительного производства является объединение в единую автоматически действующую систему всех этапов создания мащины конструирования, технологической подготовки, изготовления деталей и сборки машин. Частичным решением автоматизации на подобном уровне являются системы Автоприз (автоматическое проектирование и изготовление), объединяющие первые три этапа производства. В качестве примера подобной системы на рис. 25 приведена функциональная схема системы Автоприз для шпиндельных коробок агрегатных станков, демонстрировавшая на Лейпцигской выставке возможности дистанционной связи и управления большой протяженности. ,  [c.36]

Пневматические и газовые приводы получили широкое применение при автоматизации производственных процессов в общем машиностроении и станкостроении, в транспортном и полиграфическом машиностроении, в литейном и кузнечном производстве. Пневмоустройства используют в качестве приводов зажимных и транспортируюш,их механизмов, для дистанционного управления и регулирования, в контрольно-измерительных приборах, при автоматизации машин и устройств, работающих в агрессивных средах, в условиях пожаро- и взрывоопасности, радиации, а также при значительной вибрации и высоких температурах и т. д. [12, 34, 46, 581. Пиевмосистемы распространены в автомобильной промышленности, в самолетостроении, в космонавтике, где они применяются для автоматизации сборочных работ, для управления аварийными системами и т. д. [3, 7, 59, 74]. Пневмоустройства используют для управления также в нефтяной, газовой, химической, пищевой промышленности, в горном деле, в строительстве и т. д. [9, 61, 73]. Элементы пневмоавтоматики все больше внедряются в медицинские приборы различного назначения (для искусственного дыхания, кровообращения, инъекций и т. д.).  [c.5]

Пятое немецкие истребители первого периода Великой Отечественной войны имели превосходство над советскими по уровню автоматизации управления двигателем и системами охлаждения, а также по оснащенности средствами радиосвязи. Все это имело очень большое значение в боевой работе истребителей. Необходимо было ликвидировать от- ставание. Забегая немного вперед, можно отметить, что с 1943 г. каждый новый советский истребитель имел приемопередающие радиостанции, а затем стали появляться и автоматы, управляющие системами охлаждения.  [c.99]

Большой вклад в создание улучшенных модификаций авиадвигателей внес ЦИАМ, В 1943 г, им было успешно завершено переоборудование моторов с карбюраторной системой подачи топлива на непосредственный впрыск в цилиндры. Начались работы по автоматизации управления двигателями в боевых частях нашла широкое применение созданная институтом система объединенного управления винтом и газом, упрощавшая пилотирование и повышавшая дальность полета специалистами института был налажен ремонт и регулировка иностранных карбюраторов, а также развернута подготовка летно-технического состава ВВС к эксплуатации англо-американских авиадвигателей, полученных по ленд-лизу,  [c.229]

Самолет Т-4 оснастили несколькими комплексами радиоэлектронного оборудования навигационным — на базе астроинерциальной системы с индикацией на планшете и многофункциональными пультами управления прицельным — на базе радиолокатора переднего обзора с большой дальностью обнаружения разведки, включавшем оптические, инфракрасные, радиотехнические датчики и впервые применявшуюся РАС бокового обзора Комплексирование и автоматизация управления бортовым оборудованием были столь высоки, что позволили ограничить экипаж самолета летчиком и штурманом-оператором.  [c.143]

В развитии систем управления полетом можно выделить ряд логически связанных этапов (рис. 7.1). Первые самолеты пилотировались вручную. С увеличением скорости и размеров самолетов возросли требуемые усилия на аэродинамических рулях и появились системы, в которых большую часть этих усилий обеспечивали гидромеханические приводы (рис. 7.1, а). При увеличении диапазона скоростей и высот полета стал наблюдаться большой разброс усилий сопротивления на рулях вплоть до возникновения помогающей нагрузки. В - связи с этим появились системы, где летчик с помощью механической проводки перемещает только золотник гидроусилителя (см. рис. 7.1, б). При этом летчик не чувствовал сопротивления и для координации ею усилий стали применять пружинные нагружатели ручки управления. Для повышения устойчивости самолетов и обеспечения автоматизации управления на некоторых этапах полета в системы управления начали вводить автопилоты, которые с помощью электрогидравлических приводов небольшой мощности (рулевых машинок) вырабатывали дополнительный сигнал перемещения золотника мощного гидромеханического привода (см. рис. 7.1, в). Усложнение задач, решаемых системой управления, потребовало создания и включения в общий корпур управления систем улучшения управляемости самолета (см. рис. 7.1, г). Реализация этих систем потребовала, в свою очередь, применения различных автоматов зафузки ручки управления, датчиков положения этой ручки, а также комплекса датчиков измерения параметров движения самолета и все более усложняющегося электронного блока управления. В механическую проводку помимо различных компенсаторов люфтов стали вводить вспомогательные агрегаты типа раздвижной тяги для корректировки входного сигнала в зависимости от параметров полета. Необходимо отметить, что механическая проводка имеет сравнительно низкие статические и динамические характеристики, которые ухудшают параметры контура управления самолетом. Инерционность, люфты в  [c.155]

САПР представляют собой человеко-машинные системы, и трудности их практического применения во многом объясняются недостаточным вниманием к вопросам организации взаимодействия человека и ЭВМ в процессе создания САПР. Как и всякое новшество, САПР на пути своего внедрения встречает сопротивление со стороны специалистов-проекти-ровщиков, корни которого в психологической инерции человека. Несмотря на существенное изменение функций проектировщика и способов решения задач в САПР, неизменным должно быть направление на создание системы, наиболее благоприятствующей работе человека. САПР, как, впрочем, и любая автоматизированная система, имеет конечной целью повышение эффективности работы человека, пусть даже за счет снижения эффективности применения другого компонента — ЭВМ. Например, чрезвычайно дорогостоящие системы машинной графики при высоком уровне автоматизации производства с применением станков с числовым программным управлением ориентированы в первую очередь на удобство работы проектировщика, привычного к графическому представлению результатов проектирования, и выполняют поэтому сервисные функции. Для ЭВМ, оперирующих цифровой информацией, графическая форма ее представления неудобна и требует больших объемов памяти, производительных процессоров и специальных программных и технических средств.  [c.281]

Современное производство характеризуется все большей автоматизацией процессов, которая обеспечивает постоянный рост производительности труда. Развитие автомаФизации позволяет создавать большие технические системы, в состав которых входят вычислительные и управляющие устройства. Примером таких систем являются системы запуска и управления космическими аппаратами, единая автоматизированная система связи, система управления воздушным транспортом. Эти системы содержат много сложных составных частей, безотказная работа которых определяет правильное функционирование систем в де-  [c.15]

Большое значение для горнодобывающей промышленности имеет дальнейшее усовершенствование приводов шахтных подъемов. Приводы снабжаются системами автоматического регулирования, обеспечивающими с большой точностью изменения скорости подъемного двигателя за цикл подъема. Такие электроприводы с повышенной точностью регулирования скоростей были испытаны на Соликамском калийном комбинате и Дегтярном медном руднике, а с 1957 г. находятся в эксплуатации на шахтах Криворожского бассейна (шахта Северная и др.) [53]. Автоматизированные электроприводы подъемников увеличили производительность работ и их надежность. Так, введение автоматизированных грузоподъемников на шахте Абашевская-2>> (лКуйбышев-уголь ) сократило продолжительность цикла подъема и повысило производительность подъема на 25%. Внедрение автоматизированного ионного привода на подъемных машинах шахт Саксагань и Октябрьская (в 1958 г.), а позднее на грузовой подъемной машине Золотушинского рудника и других значительно снизило количество кратковременных аварийных отключений [9]. Весьма перспективной представляется автоматизация шахтных механизмов с дистанционным управлением.  [c.122]


Большой интерес представляет комлексная автоматизация трубопрокатного агрегата 400 на Закавказском металлургическом заводе. Оригинальные механизмы позволили здесь ликвидировать ручной труд на таких трудоемких операциях, как смена оправок и подача заготовок. Система управления автоматически обеспечивает максимальную производительность агрегата, которая возросла более чем наполовину по сравнению с периодом до автоматизации. При этом достигнуто значительное умен7лпение численности обслуживающего персонала и снижение себестоимости труб.  [c.279]

Основными направлениями экономического и социального развития СССР на 1981—1985 годы и на период до 1990 года, утвержденными XXVI съездом КПСС, предусмотрен переход к массовому применению высокоэффективных систем машин и технологических процессов, обеспечивающих комплексную механизацию и автоматизацию производства, техническое перевооружение его основных отраслей. Это требует дальнейшего развития методов расчета и проектирования автоматизированного технологического и вспомогательного оборудования, а также систем управления. Создание и эффективное внедрение автоматических систем машин для условий массового и особенно серийного производства — сложная и трудоемкая задача, решение которой включает такие этапы, как разработка технологического процесса выбор структурно-компоновочного варианта систем разработка кинематических, гидравлических, пневматических схем, блок-схем управления и т. д. конструктивная разработка механизмов, транспортнозагрузочных устройств, инструмента, приспособлений разработка планировок и общих видов изготовление и сборка приемосдаточные испытания. Чем сложнее автоматическая система машины, тем больше вариантов ее построения при этом сложность и ответственность технических решений смещаются на ранние стадии разработки — стадии технического задания и технического предложения.  [c.3]

Многие годы складское хозяйство было тем слабым местом , которое сдерживало эффективность автоматизации операций производств. Представляя собой иногда лишь площадку, огороженную от капризов погоды, склад старого типа был тем лабиринтом, где в поисках нужных материалов и изделий терялось время, выигранное от повышения производительности труда и автоматизации технологических процессов. Особенно наглядно это проявлялось в мелкосерийном и штучном производстве, которое в отдельных отраслях промышленности составляет 60—70%. Службы управления запасами производства и сбыта готовой продукции преследовали плохо скоординированные между собой цели накапливание как можно большего количества дефицитных материалов и изделий (тем самым стремление увеличения складских помещений и одновременно усиление хаоса в складском хозяйстве), увеличение производительности труда и скорейшего сбыта гото-Bofi продукции. При существовавшей ранее системе трудовые затраты на выполнение погрузочно-разгрузочных, подъемнотранспортных и складских работ составляли в среднем более 20 % общих затрат труда рабочих, занятых в производстве, а из общего числа рабочих, занятых на этих работах, 30% работало вручную.  [c.84]

Место и роль человека в системе человек—машина , а следовательно, оригинальность и специфичность художественно-конструкторского решения интерьера оборудования операторского пункта в первую очередь зависят от уровня механизации, а потом уже от автоматизации устройств контроля и управления объектом. При полном автоматическом или полуавтоматическом управлении и контроле роль человека в системе сводится к подстраховке автоматов, контролю за исправностью работы оборудования и хода технологического процесса. В этом случае активность деятельности оператора низка в основном его функции сводятся к визуальному контролю за средствами индикации. Поэтому на оптимальном в данном случ ае х удожественно-констр укто р-ском проекте интерьера и оборудования операторского пункта получает наибольшее развитие лишь панель информации. В случаях же, когда оператор непосредственно и часто воздействует на органы управления различных устройств и агрегатов, выбирая наиболее оптимальный режим работы управляемого объекта, его деятельность имеет большой объем как физических, так и умственных напряжений. С точки зрения художественного конструирования последний случай представляет наибольший интерес и соответственно трудность. Целый ряд попыток рационально спроектировать пост управления на все случаи жизни оканчивался неудачей. Причина этого кроется в стремлении проектиров-ш,иков разработать стандартное , раз и навсегда решенное (часто во всех деталях) расположение органов управления и приборов на рабочем месте оператора. Однако развивающаяся и непрерывно изменяюш аяся  [c.83]


Смотреть страницы где упоминается термин Автоматизация управления большими системами : [c.54]    [c.4]    [c.179]    [c.82]    [c.63]    [c.244]   
Смотреть главы в:

Машиностроение Автоматическое управление машинами и системами машин Радиотехника, электроника и электросвязь  -> Автоматизация управления большими системами



ПОИСК



Автоматизация систем



© 2025 Mash-xxl.info Реклама на сайте