Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железо и стали

Колебания температуры, особенно попеременные нагрев и охлаждение, увеличивают скорость окисления металлов, например железа и сталей, так как в защитной окисной пленке вследствие возникновения в ней термических напряжений образуются трещины и она может отслаиваться от металла.  [c.126]

Насыщение воздуха парами воды увеличивает скорость коррозии стали в два-три раза. При наличии в газовой среде соединений серы железо и сталь часто подвергаются меж-кристаллитной коррозии, особенно при температурах выше 1000° С.  [c.128]


Как указывалось выше, колебания температуры при нагреве или эксплуатации металлов при высоких температурах, особенно переменные нагрев и охлаждение, увеличивают скорость окисления металлов, например железа и сталей, так как в защитной окисной пленке вследствие возникновения в ней термических напряжений образуются трещины и она может отслаиваться от металла, т. е, нарушается сохранность защитной пленки в связи с низкой ее термостойкостью. В ряде случаев термостойкость может быть повышена за счет внутреннего окисления сплава, способствующего врастанию образующейся окалины в металл.  [c.136]

Особенно сильно этот фактор влияет на коррозию металлов в нейтральных электролитах, протекающую с кислородной деполяризацией. Он облегчает диффузию кислорода и часто меняет характер процесса и его контролирующую стадию. Так, при коррозии железа и стали в водопроводной воде (рис. 249) начальное  [c.352]

Графики кинетики коррозии железа и сталей в расплавах хлоридов имеют линейный ход (рис. 295 и 296). Некоторое отклонение графиков от линейного хода на их начальных участках (рис. 296) вызвано повышенными скоростями коррозии сталей в начальный момент, обусловленными тем, что при погружении образца в расплав он покрываемся коркой застывшей соли, под которой имеется воздух, окисляющий поверхность металла. По расплавлении этой застывшей корки идет растворение окисной пленки, которое протекает быстрее, чем коррозия металла. После полного растворения  [c.410]

Таблаца ЗА. Расчет критической деформации и долговечности при одноосном нагружении для а-железа и стали 304  [c.174]

Никель в чистом виде находит широкое применение в качестве защитного гальванического покрытия для изделий из железа и стали в целях повышения их коррозионной стойкости в атмосферных условиях. Основное применение никель находит в качестве легирующего элемента для изготовления различных марок высококачественных нержавеющих сталей.  [c.255]

Явление пассивации железа и стали в серной кислоте широко используется в практике, в частности при перевозках серной кислоты в железнодорожных цистернах.  [c.38]

Следовательно, так как при pH =4ч-10 коррозия ограничена скоростью диффузии кислорода через слой оксида, небольшие изменения состава стали, термическая и механическая обработка ее не повлекут за собой изменений коррозионных свойств металла, пока диффузионно-барьерный слой остается неизменным. Скорость реакции определяют концентрация кислорода, температура или скорость перемешивания воды. Это важно, так как pH почти всех природных вод находится в пределах 4—10. Значит, любое железо, погруженное в пресную или морскую воду, будь то низко-или высокоуглеродистая сталь, низколегированная сталь, содержащая, например, 1—2 % Ni, Мп, Мо и т. д., ковкое железо, чугун, холоднокатаная малоуглеродистая сталь, будет иметь практически одинаковую скорость коррозии. Этот вывод подтверждается большим количеством лабораторных и промышленных данных для разнообразных типов железа и стали 111]. Некоторые из них приведены в табл. 6.1. Эти данные опровергают распространенное мнение, что ковкое железо, например, является более коррозионностойким, чем сталь.  [c.107]


КОРРОЗИОННОЕ РАСТРЕСКИВАНИЕ ПОД НАПРЯЖЕНИЕМ ЖЕЛЕЗА И СТАЛИ  [c.132]

В разд. 6.1.1 показано, что коррозия железа в обескислороженной воде при обычной температуре незначительна. Следовательно, уменьшение содержания растворенного кислорода является эффективным практическим средством предотвратить коррозию железа и стали в пресной и морской воде. Этим сводится к минимуму также коррозия меди, латуни, цинка и свинца. Растворенный кислород удаляют из воды либо химической либо вакуумной деаэрацией.  [c.274]

Алюминий корродирует в кислотах и щелочах интенсивнее, чем в дистиллированной воде, причем в кислотах скорость коррозии зависит от природы аниона. На рис. 20.1 представлены результаты испытаний при 70—95 °С [2], которые показывают, что при использовании серной кислоты для создания кислотной среды наименьшая скорость коррозии наблюдается в интервале pH = 4,5- -7. При комнатной температуре скорость минимальна в диапазоне pH = 4- -8,5. В щелочных растворах скорость коррозии алюминия быстро увеличивается с ростом pH, в отличие от железа и стали, которые в этих средах коррозионностойки.  [c.344]

К главе в Железо и сталь  [c.390]

Принятое у нас деление металлов на черные и цветные неточно, так как железо и сталь не имеют черного цвета, а остальные металлы (кроме меди и золота) почти не отличаются по цвету от ста.ли. Черный цвет имеют мельчайшие частицы цветных металлов серебро (что используется в фотографии) и платиновая чернь. Применяемое за рубежом деление металлов на железные и нежелезные точно отражает существо принятой классификации.  [c.11]

Фиг. 2. Диаграмма прочности железа и сталей [2] Фиг. 2. Диаграмма прочности железа и сталей [2]
За 40 лет производственной, научной и педагогической деятельности Н. С. Горбуновым опубликовано более 170 печатных работ. Книги Диффузионные покрытия на железе и стали и Физико-химические основы вибрационного уплотнения порошковых материалов переведены за рубежом на английский и немецкий языки.  [c.335]

Анализ имеющихся в литературе опытных данных о скорости окалинооб-разования на сплавах железа показал, что для сплавов с хромом при высоких температурах в воздухе и в водяном паре они удовлетворительны, для кремнистого железа и стали, содержащей одновременно хром и кремний, хорошо согласуются с теоретическими выводами, а для сплавов железа с никелем имеется качественное согласование.  [c.102]

С повьшдением температуры скорость окисления Кт железа и стали очень сильно возрастает по закону, близкому к экспоненциальному (рис. 85, а), который в координатах 1/Т — Ig Кт выражается, по данным Н. П. Жука и Б. В. Линчевского, ломаной линией (рис. 85, б), каждый излом которой соответствует изменениям, происходящим в металле (эвтектоидное, магнитное и  [c.125]

Состав газовой среды оказывает большое влияние на скорость окисления железа и стали. Особенно сильно влияют кислород, соединения серы и водяные пары, о чем свидетельствуют приведенные ниже данные о зависимости относительной скорости коррозии (%) стали с 0,17% С от состава газовой среды при 900° С (по Гатфилду).  [c.128]

Введение в жидкие висмут, свинец или ртуть небольших (обычно около 0,05% по массе) количеств ингибиторов — циркония или титана — суш,ественно (иногда в сотни раз) снижает скорость растворения в них железа и стали, что обусловлено образованием на поверхности защитных пленок нитридов и карбидов циркония и титана, затрудняюш,их выход атомов твердого металла в жидко-металлический раствор. Кроме того, присутствие этих ингибиторов замедляет кристаллизацию растворенного металла в условиях термического переноса массы и увеличивает пресыщение раствора в холодной зоне.  [c.145]

Котречко С А. Структура и разрушение железа и сталей с ОЦК решеткой в неоднородных силовых полях Автореф. дис.. .. канд. техн. наук.— Киев, 1986,— 16 с.  [c.370]

Колебания температу Ш, особенно попеременные нагрев и охлаждение, увеличивает скорость окисления железа и сталей, так как в защитной окисной пленке вследствие воз-никговения в ней термических напряжений образуется тре-ЩИШ, она может отслаиваться от металла и, таким обрааон, плохо выполнять ващитнне функции.  [c.17]

Процесс азотирования железа и стали проводится в атмосфере частично диссоциироБанного аммиака NH.t - N Ч  [c.239]

Коррозионное поведение железа и стали в почве в некоторых отношениях напоминает их поведение при погружении в воду. Например, незначительные изменения состава или структуры стали не влияют на коррозионную, стойкость. Медьсодержащая, низколегированная, малоуглеродистая стали и ковкое железо корродируют с приблизительно одинаковой скоростью в любых грунтах [1а, рис. 3 на стр. 452]. Можно предположить, что механическая и термическая обработка не будет влиять на скорость коррозии. Серый литейный чугун в почве, как и в воде, подвергается графитизации. Влияние гальванических пар, возникающих при сопряжении чугуной или сталей разных составов, значительно, как и при погружении в воду (см. разд. 6.2.3).  [c.181]


В зависимости от структуры различают три основных класса нержавеющих сталей. Каждый класс включает ряд сплавов, которые несколько различаются по составу, но обладают сходными физическими, магнитными и коррозионными свойствами. Здесь приводятся обозначения сталей в соответствии с классификацией Американского института железа и стали (AISI), которую часто используют на практике. Перечень основных марок нержавеющих сталей, выпускаемых промышленностью, представлен в табл. 18.2. Основными классами нержавеющих сталей являются мартенситный, ферритный и аустенитный.  [c.296]

Еще в 1860 г. Людерс, а затем независимо от него Д.К.Чернов [82] обнаружили, что при растяжении образцов железа и стали на их поверхности образуются специфические фигуры. Д.К,Чернов связал их возвикновение с волнами упругих напряжений. Он обнаружил, что предварительно отполированные образцы становятся матовыми, и пришел к заключению, что мягкая литая сталь обладает драгоценным свойством - способностью фиксировать на своей полированной поверхиости рисунок волн упругих напряжений, если усилия превосходят предел упругости.  [c.349]

Однако наибольший вклад в научную основу проектирования металлических конструкций, подвергаемых повторным напряжениям, внес немецкий инженер Август Вёлер своими классическими опытами с железом и сталью в условиях повторного растяжения-сжатия и изгиба, результаты которых были опубликованы в период 1858 - 1870 гг. Л. Шпангенберг (1874 г.) впервые  [c.5]

Борьба с ки-I слотной корро-I зией травление I железа и стали в i кислотах защи-i та ёмкостей при хранении и транспорте кислот  [c.27]

Свинец приблизительно в 4—5 раз устойчивее, чем железо и сталь. Однако в болотастых кислых почвах или в почвах, насыщенных свободной углекислотой, коррозия свинца может быть в несколько раз сильнее. При эксплуатации свинцовых оболочек кабелей считается, что коррозионные условия почвы жесткие, если скорость коррозии свинцовой оболочки более 0,25 мм/год, средние при 0,064-0,16 мм/год и мягкие при скорости коррозионного разрушения менее 0,03 мм/год.  [c.47]


Библиография для Железо и стали : [c.50]    [c.366]    [c.332]    [c.241]   
Смотреть страницы где упоминается термин Железо и стали : [c.320]    [c.99]    [c.118]    [c.123]    [c.16]    [c.27]    [c.352]    [c.245]    [c.77]    [c.347]    [c.357]    [c.28]    [c.98]   
Смотреть главы в:

Морская коррозия  -> Железо и стали



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте