Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие причины электрохимической поляризации

ОБЩИЕ ПРИЧИНЫ ЭЛЕКТРОХИМИЧЕСКОЙ ПОЛЯРИЗАЦИИ  [c.41]

ГН/м ) наблюдается в большинстве сред [3, 36, 37], включая влажный НгЗ, аэрированные растворы Na l, Ыаг304 и NaNOs, растворы аммиака, морскую и промышленную атмосферу. В течение многих лет было широко распространено мнение о том, что водородное охрупчивание вызывает коррозионное растрескивание высокопрочных сталей, экспонированных во влажном НгЗ или некоторых кислых средах, но механизм растрескивания в других средах был менее ясен. Фелпс [36], исходя из этого, отметил, что зависимость электрохимической поляризации от времени до разрушения может являться критерием того, происходит ли растрескивание за счет водородного охрупчивания илн за счет растворения активных участков. В результате, если коррозионное растрескивание вызвано локализованной коррозией вдоль активных участков, имеющихся в стали, то наложение катодного тока должно подавить коррозионную реакцию и привести к существенному увеличению времени до разрушения. Наоборот, наложение анодного тока должно повысить скорость коррозии. Если же причиной коррозионного растрескивания является водород, выделяющийся в процессе общей коррозии, то наложение катодного тока должно привести к выделению еще большего количества водорода и соответственно уменьшить время до разрушения. Наложение анодного тока должно уменьшить выделение водорода и, следовательно, увеличить время до разрушения. На рис. 5.32 представлены различные типы кривых время до растрескивания — поляризация, где на основании описанных выше представлений указаны области, в которых разрушение происходит за счет или водородного охрупчивания, или коррозии активных участков.  [c.269]


Защита охладительных систем двигателей внутреннего сгорания (дизели, автомобили) сопряжена со значительными трудностями по следующим причинам системы содержат ряд разнородных в электрохимическом отношении металлов и сплавов (сталь, цинк, латунь, припой, чугун, алюминий) имеют много щелевых зазоров и застойных мест работают при высоких температурах и подвергаются часто эрозионному воздействию и кавитации. Все эти факторы сильно затрудняют подбор ингибиторов. Не представляет труда, как было показано выше, защитить от коррозии сталь или чугун, а также биметаллические системы сталь — медь, однако при наличии в системе алюминия, эксплуатация которого возможна лишь в узком интервале pH, применение щелочных реагентов, хорошо защищающих черные металлы, исключается. Наличие латуни также вносит свои трудности, поскольку медь со многими органическими соединениями, в особенности с аминами, образует легко растворимые комплексные соединения. Особенно трудно защитить от коррозии припой (Pb/Sn — 70/30) так, нитрит натрия, который является хорошим ингибитором для стали, разрушает припой, т. е. самостоятельно применяться не может. Положение осложняется еще и тем, что наличие в системе разнородных в электрохимическом отношении металлов приводит к катодной поляризации одних металлов и анодной поляризации других. Поэтому при определенном общем потенциале, который устанавливается в "системе или на отдельных электродах, некоторые ингибиторы, которые обычно в присутствии одного металла не восстанавливаются, могут восстанавливаться, теряя свои защитные свойства. Этот процесс, например для хроматов, усиливается при наличии в воде органических соединений (уплотнителей органического происхож-  [c.269]

Работа Хора и Хайнса совершенно четко показывает, что для создания возможности растрескивания часто необходимо, чтобы защитная пленка была разрушена электрохимическим или механическим путем. Однако навряд ли этот механизм может служить в качестве общей теории развития трещин. Если бы напряжение само по себе могло непрерывно поддерживать разрушенное состояние пленки на конце трещины, то алюминиевый сплав должен был бы быть подвержен коррозионному растрескиванию в отсутствие кислорода, причем катодный процесс заключался бы в выделении водорода. Обычно это не имеет места. Кроме того, некоторые из экспериментов Фармери трудно объяснить на основе теории разрушения пленки. В образце алюминиево-магниевого сплава, находившемся в состоянии склонности к коррозионному растрескиванию, процесс растрескивания был доведен до такого состояния, когда глубина трещины не достигала половины толщины образца, после чего дальнейшее развитие трещины было задержано наложением катодного тока по истечении 30 мин, подача тока была прекращена, но развитие этой трещины не возобновилось спустя 15 час. появились новые трещины, но уже в других местах. Еще в одном опыте глубина трещины достигла примерно одной трети толщины образца, и ее развитие тоже было приостановлено с помощью катодной поляризации поляризация продолжалась 30 мин., после чего подача тока была прервана, а механическая нагрузка на образец была увеличена все же и по истечении 48 час. образец оставался неразрушенным. Если механическое разрушение пленки на конце трещины является решающим фактором для ее развития, то разрушение пленки началось бы после прекращения подачи тока, по крайней мере в том случае, когда механическая нагрузка была увеличена. Если же образование кислоты на аноде является тем фактором, который поддерживает процесс растрескивания, после того как он начался, то полученные результаты легко объясняются. Причины развития процесса растрескивания, если он начался, те же, что и развития питтинга (стр. 117).  [c.633]


Стендер, Артамонов и Богоявлер ский [13] в свой работе высказывают иную точку зрения для разъяснения механизма электрохимической защиты. Они полагают, что защитное действие объясняется тем, что выделяющийся на защищаемых поверхностях в процессе катодной поляризации атомарный водород целиком связывает кислород, диффундирующий к корродирующей поверхности. Конечно, механизм катодной защиты может определяться торможением микрокатодного процесса путем ограничения (по той или иной причине) доставки к корродирующей поверхности кислорода, необходимого для деполяризации микрокатодов. Однако это не является общим объяснением уменьшения скорости электрохимической коррозии под влиянием катодной поляризации. Так, например, хорошо известно, что электрохимическая защита осуществляется и при отсутствии доступа кислорода (напрпмер, в атмосфере водорода), а также и то, что принципиально осуществима электрохимическая защита в кислой среде, когда доступ кислорода не является контролирующим фактором коррозии.  [c.232]


Смотреть страницы где упоминается термин Общие причины электрохимической поляризации : [c.222]    [c.56]    [c.39]   
Смотреть главы в:

Электрохимические основы теории коррозии металлов  -> Общие причины электрохимической поляризации



ПОИСК



Поляризация

Поляризация причины

Причинность

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте