Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамика и скорость коррозии

Термодинамика и скорость коррозии  [c.6]

Хотя термодинамика дает возможность определить, насколько изучаемая система отдалена от состояния равновесия [числитель правой части уравнения (1)1, однако она в большинстве случаев не дает ответа на весьма важный и с теоретической, и с практической стороны вопрос с какой скоростью будет протекать термодинамически возможный коррозионный процесс Рассмотрением этого вопроса, а также установлением влияния различных факторов на скорость коррозии и характер коррозионного разрушения металлов занимается кинетика (учение о скоростях) коррозионных процессов.  [c.11]


В настоящее время наука Химическая термодинамика позволяет произвести оценочные расчеты и определить превышение потенциальной энергии над равновесной - AG ( G - изобарно - изотермический потенциал системы металл -окружающая среда ), таким образом оценить склонность металла к коррозии (но не скорость коррозии).  [c.6]

При ВЫСОКИХ температурах практически полностью исчезает перенапряжение, связанное с затруднениями в электрохимических актах электронных переходов (при ионизации металлов, перезаряде и разряде ионов). Вследствие этого анодный (ионизация металлов) и катодный (восстановление деполяризатора) процессы могут протекать как на одних и тех же, так и на различных участках поверхности корродирующего. металла. Какой из предполагаемых процессов будет лежать в основе коррозии и с какой скоростью будет протекать процесс в данных условиях, можно судить из более детального рассмотрения термодинамики и кинетики соответствующих реакций.  [c.187]

Из теории микроэлементов вытекает, что при отсутствии на поверхности металла разнородных участков процесс коррозии не будет иметь места. Опыты с чистыми металлами (дистиллированным цинком) показывают, что их скорость коррозии значительно меньше, чем технического металла. Однако имеются гомогенные сплавы (амальгамы), которые в то же время разрушаются очень быстро. Гипотеза невозможности растворения гомогенных металлов оказывается в противоречии с опытом и термодинамикой. Для объяснения электрохимического механизма растворения амальгам А. Н. Фрумкиным была выдвинута теория гомогенно-электрохимического растворения металлов, не исключающая, а дополняющая теорию микроэлементов — теорию гетерогенно-электрохимического процесса растворения металлов.  [c.40]

Последние четыре главы, объединенные автором в отдельную часть, посвящены вопросам количественной оценки коррозионных процессов и представляют несомненный теоретический и практический интерес. В них излагаются методы измерения кинетики окисления и коррозии в электролитах, теоретическое исследование роста пленок, поляризационные измерения толщины пленок, распределение потенциала в электролитических ячейках, определение скоростей коррозии, применение термодинамики к проблемам коррозии, статическая обработка экспериментальных результатов и пр.  [c.7]

При коррозии с водородной деполяризацией процесс окисления металла протекает со сравнительно большой скоростью. В кислотах активно растворяется большинство металлов (кроме ртути, серебра, золота и платины). Можно показать, что чисто термодинамически вероятность коррозионного разрушения металлов в кислых средах возрастает с уменьшением концентрации ионов металла в среде и с увеличением концентрации ионов водорода. Следует подчеркнуть, что термодинамика рассматривает вопрос только о возможности процесса (в том числе и коррозионного) при отсутствии сопротивления ему, поэтому термодинамические расчеты не определяют кинетику коррозии.  [c.21]

Скорость процессов химической коррозии керамики зависит также от ее структурных особенностей, т. е. пористости и характера распределения пор, их формы и размера, состояния поверхности, степени кристаллизации, распределения кристаллической и стекловидной фаз. Как и во всяком химическом процессе, скорость химического взаимодействия зависит от температуры, давления, концентрации, скорости относительного перемещения реагирующей среды и керамического изделия. Оценка возможного взаимодействия той или иной среды с керамикой может быть произведена с помощью термодинамических расчетов. Термодинамика дает основание установить возможность самопроизвольного процесса химического взаимодействия при определенных условиях.  [c.26]


Как видно из табл. 12, коррозия подавляющего большинства металлов — процесс термодинамически неизбежный, и приходится удивляться не тому, что он происходит, а скорее тому, что этот процесс, приводящий к образованию, например, термодинамически устойчивых окисных соединений, в ряде случаев удается очень сильно затормозить. Однако, как известно, термодинамика не может дать ответ на вопрос о скорости реакции — для этого необходимо обратиться к изучению кинетики электродных коррозионных процессов.  [c.121]

До сих пор коррозионные гальванические микро- и макропары мы рассматривали преимущественно с точки зрения законов термодинамики. Однако этого недостаточно для решения многих вопросов. Во-первых, при термодинамических расчетах трудно предусмотреть сложное влияние среды, которая зачастую играет решающую роль в определении степени коррозии металла. Во-вторых, с помощью термодинамики принципиально невозможно вычислить скорость коррозионных процессов, определяющих долговечность конкретных сооружений и сроки их ремонта. В-третьих, коррозия металлов почти повсеместно сопровождается сложными побочными и вторичными процессами, сказывающимися иногда чрезвычайно сильно на скорости развития основной химической реакции, тогда как термодинамические данные пригодны (и то с рядом ограничений) для расчета основ-  [c.125]

Коррозия является физико-химическим процессом и закономерности ее протекания определяются общими законами термодинамики и 1синетики гетерогенных систем. Различают внутренние и внешние факторы коррозии. Внутренние факторы характеризуют влияние на вид и скорость коррозии природы металла (состав, структура и т.д.). Внешние факторы определяют влияние состава коррозионной среды и условий протекания коррозии (температура, давление и т.д.).  [c.13]

ПИЯ на термодинамику и кинетику окиеления и коррозии [100— 112]. Высказывались предположения, что механические напряжения влияют на скорости коррозии путем изменения формы кинетического закона [106], хотя такие представления и вызывают возражения [109]. Кроме того, некоторые теории [101] и экспериментальные наблюдения [35, 108] указывают на возможность ускорения коррозии вследствие разрушающего воздействия приложенного напряжения на поверхностную пленку коррозионных продуктов. Недавние исследования коррозии жаростойких сплавов Со—Сг—А1 и N1—Сг—А1 (без добавок и с добавками иттрия, улучшающими адгезию окисла [Ш]) показали, что, хотя деформация под действием высоких сжимающих напряжений может приводить к короблению и растрескиванию пленок АЬОз, степень последующего отслаивания и повторного окисления, т. е. кинетика окисления, существенно не изменяется [110].  [c.25]

С точки зрения термодинамики титан является очень неустойчивым металлом (его нормальный потенциал равен —1,63 в), а высокая коррозионная устойчивость титана в большинстве химических сред объясняется образованием на его поверхности заш,итных окисных пленок, исключаюш их непосредственный контакт металла с электролитом. Вследствие этого было интересно исследовать электрохимическое и коррозионное поведение титана в условиях поляризации его переменным током различной частоты, когда в катодный полупериод тока может происходить частичное или полное разрушение пассивного состояния, а в анодный полупериод — его возникновение. Подобные исследования кроме чисто научного интереса представляют, несомненно, и определенную практическую ценность, поскольку титан и его сплавы начинают все шире внедряться в технику как новый конструкционный материал с особыми свойствами и разносторонняя характеристика его коррозионных свойств в различных условиях становится необходимой. Помимо этого, можно полагать, что изучение электрохимических и коррозионных процессов путем наложения на исследуемый электрод переменного тока различной частоты и амплитуды при дальнейшем совершенствовании может явиться наиболее подходяш,им методом для исследования скоростей электродных процессов, а следовательно, и методом изучения механизма электрохимической коррозии и пассивности металлов. Цель настояш,ей работы — выяснение основных факторов, определяющих скорость коррозии титана под действием переменного тока, а также установление механизма образования и разрушения пассивирующих слоев, возникающих на поверхности титана  [c.83]

Торможения в протекании коррозионного пооцесса (вероятного с точки зрения термодинамики) могут быть двух родов торможение за счет большой энергии активации и торможение за счет затруднений в процессах диффузии (транспорта) реагента к поверхности металла или продуктов реакции в обратном направлении. Все сказанное можно пояснить энергетической схемой, приведенной на рис. 1. Протекание термодинамически Еозможной коррозионной реакции уподобляется здесь падению шарика с верхней плоскости на нижнюю с высоты к. В случае а (рис. 1) шарик падает беспрепятственно, что соответстзовало бы безгранично большим скоростям коррозии в случае отсутствия тормозящих факторов. Однако этот процесс вероятного падения шарика может быть задержан или вследствие необходимости предварительного преодоления какого-то барьера (рис. 1,6), или вследствие трудности осуществления самого перемещения шарнка, например, мал угол наклона, велико трение вязкой среды (рис. 1,в).  [c.13]


Ответ. Чтобы вычислить параболическую константу скорости К, необходимо знать коэффициент диффузии D как функцию активности одного компонента в слое продукта коррозии. В случае окисления железа до закиси прекрасное количественное соответствие получили Химмель и Биршеналл, которые измерили я К я D. В случае сульфида серебра, где D в слое продукта фактически постоянно, пока, очевидно, долн но наблюдаться расхождение между вычисленной и измеренной величиной D. Необходимы другие примеры точных сравнений, потому что эта проблема является одной из интереснейших проблем в общей теории необратимой термодинамики, так как показывает область, в пределах которой мы можем получить скорости, пропорциональные сродству.  [c.37]


Смотреть страницы где упоминается термин Термодинамика и скорость коррозии : [c.443]   
Смотреть главы в:

Защита металлов от коррозии лакокрасочными покрытиями  -> Термодинамика и скорость коррозии



ПОИСК



Коррозия скорости

Термодинамика



© 2025 Mash-xxl.info Реклама на сайте