Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

101, тепловая принципы построени

Системы регулирования температуры при любом способе нагрева в установках для тепловой микроскопии следует разрабатывать, исходя из общих принципов построения систем тепловой автоматики управления термическим воздействием на исследуемый образец.  [c.79]

В настоящем параграфе излагаются принципы построения математической модели газо-жидкостного цикла АЭС с диссоциирующим газом в качестве рабочего тела второго контура и результаты исследований, проведенных с ее помощью. Источником тепловой энергии в цикле служит натриевый реактор на быстрых нейтронах. Испарение и частичный перегрев рабочего тела второго контура осуществляются за счет тепла газа низкого давления в регенераторе (рис. 4.9). В связи с тем, что газ на выходе из турбины низкого давления имеет большую степень перегрева, конденсатор разделен на две части охладитель газа и собственно конденсатор.  [c.94]


Изложенные принципы построения диаграмм I-S позволяют построить также тепловые диаграммы для парогазовых смесей, рассматриваемые в гл. XV.  [c.88]

Изложенные ранее принципы построения энтропийных диаграмм для парогазовых смесей п. 4, ч. II позволяют строить не только диаграммы 1-S для различных областей изменения параметров, но и диаграммы T-S (или t-S) . Особенности построения энтропийных диаграмм приводят к своеобразным методам их применения, а свойства парогазовых смесей — к необычному виду некоторых кривых на диаграмме. Это было показано при описаний диаграмм I-S, но не в меньшей мере это присуще и тепловым диаграммам. Отличительные особенности последних мы рассмотрим на примере диаграмм построенных для паровоздушной смеси.  [c.173]

Громов Н.К. О принципах построения схем тепловых сетей в городах, их автоматизация и телемеханизация // Теплоэнергетика. 1976. № 11. С. 28-34.  [c.214]

Гидравлические системы используются для принудительной смазки тяжело нагруженных трущихся поверхностей различных машин и механизмов. Наиболее широкое применение они нашли в тепловых двигателях, в частности в поршневых двигателях внутреннего сгорания. Учитывая одинаковые или схожие принципы построения систем смазки для большинства машин, рассмотрим их на примерах использования в поршневых двигателях.  [c.263]

В гл. 7—9 дан качественный анализ работы идеально вязких конструкций на основе разработанных векторных представлений, наглядно иллюстрирующий наиболее важные закономерности поведения неупругих анизотропно упрочняющихся тел при однократном, повторно-переменном и циклическом механическом и тепловом нагружениях. Здесь рассмотрены и принципы построения расчетных моделей конструкций. Примеры выполнения практических расчетов кинетики полей неупругих деформаций в деталях конструкций приведены в гл. 10.  [c.10]

Излагаемый ниже метод теплового расчета базируется в основном на работах ВТИ и ЦКТИ и суммирует результаты теплотехнических исследований, выполненных институтами за последние 10— 15 лет.. - Основные принципы построения метода расчета и распределение материалов по главам сохранены такими же, как в издании 1957 г.  [c.3]

В книге изложены теоретические основы технических измерений, проанализированы причины возникновения ошибок и показаны способы обработки результатов для повышения их достоверности. Рассмотрены принципы построения измерительных систем, описаны совершенные способы приема и преобразования информации, а также вопросы автоматизации процесса измерения. Последовательно изложены применяемые в настоящее время в промышленности методы и приборы для контроля электрических и тепловых величин, времени, числа, линейных размеров, скоростей, мощности, плотности, вязкости, концентрации и многих других параметров.  [c.278]

Вопрос о принципах построения абсолютной шкалы температур тесно связан с анализом основных принципов преобразования теплоты в работу. Действительно, как мы сейчас увидим, коэффициент полезного действия (к. п. д.) наивыгоднейшего с термодинамической точки зрения кругового процесса (цикла) теплового двигателя прямо определяется через абсолютные температуры взаимодействующих с двигателем тел. Это дает возможность свести вопрос о построении абсолютной шкалы температур к определению к. п. д. такого кругового процесса. Впервые этот круговой процесс был предложен (и обоснован как наивыгоднейший) Карно. Поэтому он получил название цикла Карно. Таким образом, изучение абсолютной шкалы температур надо начать с рассмотрения цикла Карно.  [c.117]


Теория определяющих соотношений как самостоятельный раздел механики сплошной среды сформировалась сравнительно недавно трудами А. А. Ильюшина и К. Трусделла. В этих трудах в виде постулатов были сформулированы требования, предъявляемые к операторам связи между напряжениями и деформациями, с тем чтобы дать корректное описание новых адекватных моделей механики. Была создана теория процессов деформирования, которая нашла особенно широкое применение в механике деформируемого твердого тела. В последующем теория определяющих соотношений стала трактоваться более широко и описывать связи между любыми основными объектами, рассматриваемыми как процессы, и их потоками . Эта связь учитывает историю процессов и взаимодействие полей различной природы (механической, тепловой, электромагнитной и т.д.). В связи с появлением нового раздела механики деформируемого твердого тела — механики композитов — были сформулированы основные принципы построения теории эффективных определяющих соотношений, которые могли быть найдены либо экспериментально, либо из решения некоторых задач по известным определяющим соотношениям компонентов композита. Такая теория продолжает оставаться актуальной и в настоящее время ввиду широкого распространения композитов в технике. Интересный вклад в развитие теории определяющих соотношений внес А.Ю. Ишлинский. В работе дается краткий обзор исследований в этой области механики.  [c.635]

Таким образом, температура может представлять собой как параметр состояния, определяющий качественную (тепловую) сторону процесса, так и потенциал переноса тепловой энергии, определяющий количественную сторону процесса. Поскольку измерение температуры связано с использованием определенных тел и их термометрических свойств, а при разных температурах тела имеют разные энергетические состояния и разные физические свойства, постольку принятая единица измерения температуры (1 град) является по существу лишь мерой масштаба принятой температурной шкалы и процесс измерения температуры является определением положения на температурной шкале уровня измеряемой температуры. Поэтому особое значение в термометрии имеет принцип построения и воспроизведения температурной шкалы.  [c.196]

Для повышения производительности и удобства работы пользователей с программами, связанными с расчетами электромагнитных и тепловых процессов в установках индукционного нагрева, разработана диалоговая автоматизированная система исследования и проектирования устройств индукционного нагрева RD, ориентированная на операционную систему СВМ ЕС ЭВМ. Основная концепция разработки базировалась на известных принципах построения САПР [164—166]. Однако систему RD отличают незначительный объем оперативной памяти, занятой управляющей процедурой простота и легкость управления системой широкое использование средств самообучения и доступ к большому объему справочной информации.  [c.260]

Уравнения движения сплошной среды определяют в заданных полях массовых сил и скоростей дивергенцию тензора напряжений, но не напряженное состояние ее. Все процессы (движения и равновесия) происходят в соответствии с этими уравнениями будучи необходимыми условиями осуществимости процессов, они недостаточны для их полного описания, так как различные среды (материалы) по-разному реагируют на воздействие одной и той же системы сил (кусок глины, стальной стержень). Единые для всех сред общие теоремы механики — количеств движения, моментов количеств движения, из которых выведены уравнения движения, должны быть дополнены физическими закономерностями, определяющими поведение материалов различных свойств. Ими формулируются уравнения состояния (называемые также определяющими уравнениями) — соотношения связи тензора напряжений с величинами, определяющими движение частиц среды, если ограничиться только механической постановкой задачи (тепловые воздействия рассматриваются в гл. 9). Эксперимент является решающим в установлении этих закономерностей, но только в конечном счете . Неизбежно умозрительное рассмотрение с целью установить общие принципы построения уравнений состояния и классификации материалов. Лишь исходя из математической модели некоторого достаточно узкого класса материалов, можно извлечь сведения  [c.80]

Для осуществления прямого или обратного цикла недостаточно иметь только рабочее тело и расширительную машину, но это стало ясно не сразу. Неясность условий протекания прямого и обратного циклов в расширительной машине не позволяла выяснить технические принципы построения тепловых машин.  [c.8]

Идеи, определившие общие принципы построения исследовательской работы, были сформулированы советскими учеными к 1930 г. При их изложении подчеркивалось, что в противоположность старым, феноменологическим, методам исследований, основанным на изучении тепловых машин и аппаратов в целом, в новых работах по теплообмену необходимо не только аналитически, но и экспериментально детально исследовать физические явления, из которых складываются рабочие процессы изучаемых машин и аппаратов.  [c.8]

Принцип построения пассивной инфракрасной головки самонаведения показан на рис. 24 [14]. Поступающие от цели, а также отраженные и собственные излучения фона собираются оптической системой и фокусируются на поверхности чувствительного элемента. Информация о цели от чувствительного элемента в виде электрического сигнала поступает в электронную схему (усилитель и блок выделения команды). Конечным звеном схемы являются сервомеханизмы, связанные с рулями управления. Элементы схемы от входной оптики до электронной схемы называют тепловым координатором цели.  [c.59]


Величины К[ называют множителями преобразования, или константами подобия. При таком построении группы фигур каждый прямоугольник отличается от другого внутри данной группы только своим масштабом. При этом каждой точке одной фигуры соответствует сходственная точка другой. Такого рода преобразования называют подобными. Принципы подобия приложимы не только к геометрическим телам, но и к физическим и тепловым процессам.  [c.411]

По другому принципу работает механический селектор нейтронов, который выделяет моноэнергетические нейтроны по методу времени пролета. Первый прибор такого типа для тепловых нейтронов был построен в 1947 г. Ферми и его сотрудниками. Устройство прибора показано на рис. 125. Здесь Ц — стальной цилиндр диаметром 4 см, полость которого заполнена чередующимися слоями из алюминия и кадмия толщиной соответственно  [c.333]

Если дом хорошо построен, у него будет большая постоянная времени тепловой релаксации т. Эта постоянная характеризует врем , за которое разница температур между внешней и внутренней сторонами стены дома уменьшается на 1/е своего первоначального значения. Значение ее существенно изменяется в зависимости от конструкционных характеристик зданий. Поскольку воздух нагревается быстро, регулирование таких отопительных систем с принудительной подачей нагретого воздуха относительно просто, т. е. их можно легко отключать в ночное время и в выходные дни и также просто включать незадолго до появления людей в помещениях. Тепловая мощность типовой отопительной установки, работающей по этому принципу, составляет примерно 17 кВт. Этой мощности достаточно, чтобы обеспечить повышение в течение минуты температуры в доме объемом 430 м примерно на 1,9 °С. Поэтому если отопительная установка будет включена примерно за час до того, как семья начнет жить по дневному распорядку, температу. ра в доме после ночного снижения довольно быстро достигнет своего привычного уровня (рис. 11.4). В 6 ч 30 мин отопительная установка включается на 1,5 ч, затем выключается и снова включается в 15 ч 30 мин и работает примерно до полуночи. Суммарная потеря теплоты домом за время, пока отопительная установка отключена, составляет  [c.263]

Глава 3 посвящена принципам и методу автоматизации построения математической модели тепловой схемы теплоэнергетических установок и алгоритма ее расчета. Приведен пример использования разработанного метода.  [c.3]

Общий недостаток отмеченных методов — использование в них в той или иной степени алгоритмов, принятых в ручных расчетах, что не позволяет в полной мере автоматизировать процесс программирования. Построение программ расчета не основывается на достаточно общих математических принципах, позволяющих развивать и совершенствовать моделирование тепловых схем.  [c.56]

Принятие расширенной концепции теплоты не связано с нарушением каких-либо теплофизических принципов передачи тепла. Вместе с тем принятие такой концепции представляется настоятельной методологической необходимостью, так как передача тепла миграцией теплоносителя есть главный, неотъемлемый фактор рабочих процессов реальных тепловых двигателей. Для построения общей термодинамической теории таких двигателей расширенная концепция теплоты является методологической проблемой номер один.  [c.34]

В соответствии с принципом несводимости качественно различных воздействий при построении уравнения вводим отношение тепловых и механических воздействий  [c.55]

При построении изложенных выше канонических описании изменения состояния рабочего тела переменной массы неизменно учитывался принцип несводимости качественно различных воздействий. Выражением этого явилось введение в зависимости (57) и (62) отношений тепловых воздействий к механическим.  [c.64]

Поршневые двигатели внутреннего сгорания являются самыми распространенными тепловыми двигателями. Наибольшее применение получил четырехтактный двигатель, конструктивная схема которого представлена на рис. 9.1, в. Принцип его работы целесообразно рассмотреть с одновременным построением диаграммы в координатах давления р и объема W.  [c.109]

В предыдущих разделах было показано, что в то время как кривые солидуса можно строить методом термического анализа, другие превращения, протекающие в твердом состоянии, обычно слишком замедленны, для того чтобы их можно было точно зафиксировать этим методом. Хотя в принципе выделение р-фазы из -твердого раствора (фиг. 11) в процессе медленного охлаждения при соответствующем изменении растворимости рва сопровождается некоторым тепловым эффектом, процесс зарождения и роста новой фазы обычно идет слишком медленно, для того чтобы на кривой охлаждения наблюдался четкий перегиб. Если на кривых охлаждения и обнаруживаются критические точки, то из-за сильного переохлаждения на них не следует полагаться как на точные данные. Аналогично превращение однородной промежуточной фазы АВ при медленном охлаждении и переходе через температуру эвтектоидной горизонтали (фиг. 17, а) может вызвать появление критической точки на кривой охлаждения, построенной в коор-  [c.91]

Так как поведение многих технически важных газов и ях смесей в условиях работы ряда тепловых машин не дает значительных отклонений в свойствах, описываемых уравнением Клап( йрона то расчет двигателей внутреннего сгорания, газотурбинных установок, жидкостно-ракетных двигателей существенно упрощается. Некоторые принципы построения уравнения состояния реальных газов рассматриваются в гл. IX.  [c.19]

Книга посвящена рассмотрению широкого круга физических явлений, определяющих принципы построения и работы РЭА и ЭВЛ и технологических процессов их изготовления — физической природе механических, тепловых,, алектрнческих и магнитных свойств твердых тел н пленок, адгезионной связа и механической стабильности и надежности пленочных структур, природе кои-тактных и поверхностных явлений, термоэлектрических, гальваномагнитных, оптических и фотоэлектрических эффектов и механизму переноса зарядов через топкие пленки.  [c.2]

Наиболее простым и надежным методом термодинамического расчета тепловых процессов является, как известно, графический метод с помощью диаграммы i-s. Но применительно к парогазовым смесям диаграмма i-s должна иметь еще третью координатную ось, определяющую количественный состав смеси. Стремление избежать применения трехмерных диаграмм привело к появлению диаграмм, построенных при упрощающих условиях на плоскости и позволяющих графическим способом решать отдельные частные задачи. Лучшими из них являются предложенные Ф. Бошняковичем совмещенные диаграммы I-K и S-K, где К — концентрация влаги в парогазовой смеси. Однако эти диаграммы оказались очень сложными в применении. Поэтому возникла необходимость разработать другие принципы построения энтропийных диаграмм для парогазовых смесей П2], позволяющие строить их в прямоугольной системе координат на плоскости.  [c.6]

ISBN 5-283-00234-9 Дан подробный анализ задач, решаемых АСУ ТП систем централизованного теплоснабжения. Особое внимание уделено методам оптимизации режимов работы и параметров тепловых сетей, методам оптимизации самих систем теплоснабжения, принципам построения математических моделей, используемых для комплексной оптимизации. Рекомендованы структурная схема управления системой теплоснабжения средней мощности, а также разработанные одним из авторов математические модели имитационного и оптимизационного типа.  [c.2]


Рассмотрены принципы построения, основы проектирования, вопросы повышения точности и динамики систем ориентации и стабилизации космических аппаратов (КА). В основном рассматриваются пассивные и комбинированные системы стабилизации посредством вращения, цри помощи давления солнечных лучей, а также гравитационные и газореактивные системы. При исследовании динамики учитываются упругость и тепловая деформация стабилизаторов, нелинейность характеристик датчиков и т.п. Уделено внимание способам и устройствам демпфирования колебаний пассивных систем стабилизации, вопросам управления и прогнозирования движения спутника, стабилизированного вращением (1-е изд., 1977 г.).  [c.2]

Основной принцип построения модели механизма износа агрегата заключается в том, что по оси абсцисс откладывается долговечность агрегата при работе с обобщенной нагрузкой к, требуемой ТЗ, а по оси ординат — свойство агрегата — его живучесть Н, обеспечивающее получение этой долговечности, причем живучести составляющих агрегатов элементов, работающих при различных нагрузках (механических, тепловых и т. п.), измеряются в процентах от средней живучести элемента данного типа (от Яср, принимаемой за 100%). Это позволяет на графике совместить параметры живучести всех элементов агрегата и обозначить их до обкатки Яоср, а после обкатки — //об.ср. Соответственно дисперсии элементов можно ограничить всего двумя кривыми кривая / относится к элементу двигателя, имеющему после изготовления минимальную дисперсию живучести, а кривая 2 — к элементу с максимальной дисперсией живучести. Все остальные элементы двигателя занимают промежуточные положения между этими крайними случаями (поле, заштрихованное вертикальными штрихами). Звездочками [1 и 2 ) обозначены кривые плотности распределения живучести элементов после обкатки агрегата. Поскольку при обкатке возможна выбраковка дефектных экземпляров, то дис- Персия живучести после обкатки может уменьшится. Например,  [c.77]

На базе радиоактивного изотопа трудно построить прямой преобразователь большой мощности. Существенно большие возможности в этом отношении дает цепная ядерная реакция, позволяющая в принципе получать сколь угодно большое количество тепловой энергии. В августе 1964 г. в Институте атомной энергии им. И. В. Курчатова запущен первый реактор прямого преобразования тепла в электричество. Этот реактор-термопре- образователь получил название Ромашка . Основой Ромашки является высокотемпературный ( макс = 1800° С) реактор, активная зона которого состоит из не боящихся высокой температуры дикарбида урана и графита (используется как конструкционный материал). Активная зона реактора, имеющая форму цилиндра, со всех сторон окружена бериллиевым отражателем. На наружной поверхности отражателя находится термоэлектрический преобразователь, состоящий из большого числа кремний-германиевых пластин, внутренние стороны которых нагреваются теплом, выделяемым реактором, а наружные охлаждаются. Электрическая мощность Ромашки — 500 вт. Реактор-термопрео бразователь примерно такой же мощности построен также в США.  [c.408]

Системная модель ЭМУ имеет своим назначением обеспечить совместное изучение процессов различной физической природы (электромеханических, тепловых, магнитных, силовых), их особенностей и проявлений во взаимосвяэи, определяемой внутренними закономерностями объекта (принципами работы, конструкцией, параметрами), его погрещностями на уровне технологической неточности, внешними возмущениями при эксплуатации, а также целенаправленными управляющими воздействиями. Построение модели означает органичное объединение в. единый алгоритм отдельных частных моделей, чему при исследовании физических процессов в ЭМУ способствует единая методика, положенная в их основу. Структурные связи частных моделей позволяют учесть в общем алгоритме реальные взаимосвязи и повысить достоверность описания объекта. Комплексность модели обеспе-140  [c.140]

Первое начало термодинамики — математическое выражение закона сохранения и превращения энергии применительно к тепловым процессам в его наиболее общей форме. Открытию закона сохранения и превращения энергии предшествовали многочисленные экспериментальные и теоретические исследования в области физики и химии, развитие тепловых двигателей в XVIII и XIX столетиях, установление принципа, исключающего построение вечного двигателя первого рода (1775 г.), открытие закона Г. И. Гесса (1840) и, наконец, принципа эквивалентности (1842—1850 гг.) как завершающего этапа в открытии закона сохранения и превращения энергии.  [c.29]

При построении тепловой схемы станции необходимо придерживаться следующих основных принципов выбора единичной 1М0щн0-сти и типов турбоагрегатов  [c.109]

Материал этого параграфа имеет лишь косвенное отношение к содержанию данной главы и включен в нее потому, что нелинейные элементы могут быть использованы не только в качестве самостоятельного нелинейного сопротивления, моделирующего соответствующую нелинейность тепловой системы, но и в сочетании с активными элементами в гибридных моделях. Так, помимо применения нелинейных элементов в моделях, построенных по принципам предложенного автором книги метода нелинейных сопротивлений, эти элементы могут быть использованы в качестве обратных связей операционных усилителей для создания функциональных преобразователей с соответствующими характеристиками. Кроме того, представляет интерес совместное использование нелинейных элементов, моделирующих ту или иную нелинейность системы, и элементов структурных моделей для создания специализированных устройств, реализующих сложные нелинейные зависимые от времени граничные условия II—IV рода в задачах теплопроводности (гл. X—XII), моделирующих нелинейные процессы в разветвленных гидравлических системах (гл. XVI), решающих обратные и инверсные задачи теплопроводности (гл. XIII).  [c.57]

Рабочие циклы различных форм двигателя Стирлинга, преобразующих тепловую энергию в механическую, уже нами описаны. Все эти двигатели имеют одни и те же основные принципы работы, однако есгь и некоторые различия в конструктивном воплощении, особенно там, где дело касается способов использования вырабатываемой энергии. Схематические диаграммы и детальные описания, хотя и весьма полезные для облегчения понимания основных принципов, на которых основаны эти двигатели, не всегда облегчают дело, когда надо определить, относится ли рассматриваемое устройство к двигателям Стирлинга. В следующем разделе приводятся фотографии и описания уже построенных двигателей Стирлинга различных видов, что позволит устранить эти трудности.  [c.50]

Второе начало термодинамики. Энтропия, Второе начало термодинамики указывает преимущественные направления протекающих процессов. Исторически оно возникло из анализа работы тепловых машин [58]. На этой основе был сформулирован принцип невозможности построения вечного двигателя второго рода [58] невозмож но осуществить такой непрерывно действующий двигатель, в каждом цикле которого производилась бы положительная работа только за счет охлаждения одного тела без каких-либо других изменений в телах.  [c.64]

Книга Р. У. Хейвуда Термодинамика равновесных процессов существенно отличается от предыдущей. Если в Анализе циклов в технической термодинамике автор сразу обращается к анализу конкретных систем, а вопросы чистой теории кратко обсуждаются только в приложениях, то в предлагаемой книге эта последовательность обращена и на первый план выходят теоретические принципы. И в то же время ввсь характер изложения возвращает нас в добрые старые времена, когда Сади Карно, как пишет Р. Фейнман, желал построить наилучшую и наиболее экономичную машину , и продолжает Это один из немногих замечательных случаев, когда инженер заложил основы физической теории . В Термодинамике равновесных процессов Р. У. Хейвуда логика аксиоматических построений и доказательства теорем сочетаются с анализом действия конкретных тепловых машин. Такое органическое сочетание абстракции с инженерным расчетом, пожалуй, уникально в современной научной литературе.  [c.5]


Смотреть страницы где упоминается термин 101, тепловая принципы построени : [c.89]    [c.288]    [c.423]    [c.131]    [c.72]    [c.591]    [c.853]    [c.249]    [c.175]    [c.58]   
Системы очувствления и адаптивные промышленные работы (1985) -- [ c.121 , c.125 ]



ПОИСК



Принципы построения



© 2025 Mash-xxl.info Реклама на сайте