Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

101, тепловая логическая

В гл. 5 рассматриваются методы анализа процессов функционирования элементов интегральных схем, методы анализа статических режимов и переходных процессов в объектах на различных уровнях, методы анализа тепловых режимов, методы анализа логических и функциональных схем ЭВА, методы многовариантного и статистического анализа.  [c.5]

Универсальность. При определении ОА необходимо выбрать совокупность внешних параметров и совокупность выходных параметров у/, отражающих учитываемые в модели свойства. Типичными внешними параметрами при этом являются параметры нагрузки и внешних воздействии (электрических механических, тепловых, радиационных и т.п.). Увеличение числа учитываемых внешних факторов расширяет применимость модели, но существенно удорожает работу по определению ОА. Выбор совокупности выходных параметров также неоднозначен, однако для большинства объектов число и перечень учитываемых свойств и соответствующих им выходных параметров сравнительно невелики, достаточно стабильны и составляют типовой набор выходных параметров. Например, для макромоделей логических элементов БИС такими выходными параметрами являются уровни выходного напряжения в состояниях логических О и 1 , запасы помехоустойчивости, задержка распространения сигнала, рассеиваемая мощность.  [c.150]


При изучении теплоотдачи в инертных теплоносителях закон Фурье служит логическим основанием лля записи формулы Ньютона, формально определяющей плотность теплового потока при теплоотдаче.  [c.364]

Модели относятся к двухкомпонентным и состоят из трех основных частей (блоков) тепловой, электрической и информационно-логической.  [c.133]

Машинами-двигателями на )ываются машины, в которых тот или иной вид энергии (электрической, тепловой и др.) преобразуется в энергию, необходимую для приведения в движение рабочих машин. К рабочим машинам относятся машины, предназначенные для облегчения и замены физического труда человека по изменению свойств, состояния, формы, размеров и положения обрабатываемого материала и объекта, а также для облегчения и замены его логической деятельности по выполнению расчетных операций и операций контроля и управления производственными процессами. К таким машинам относятся транспортные, землеройные, прядильно-ткацкие, вычислительные и др.  [c.10]

Сторонники ppm-2, защищающие возможность использования в энергетике концентрации энергии на основе уменьшения энтропии, никак не могут смириться с тем, что отрицание тепловой смерти и отрицание закона возрастания энтропии — вещи разные. Они упорно твердят о том, что раз теория тепловой смерти неверна, то неверен второй закон, из которого она следует . Тот факт, что она из второго закона никак не следует и такой логический ход (экстраполяция закона за пределы его применимости) недопустим, игнорируется.  [c.149]

Итак, познакомимся с теоретической базой ррт-2 — обновленной термодинамикой. Поступим так сначала приведем соответствующие цитаты, расположив их по возможности в логической последовательности, а затем будем их распутывать и анализировать. Начнем с главы Принципиальная возможность создания теплового двигателя с одним источником тепла в [3.16].  [c.196]

Рассмотрение внезапных отказов транзисторов и отказов, вызываемых постепенным изменением параметров элементов, позволяет вычислить суммарную вероятность отказов системы. Для этого нужно воспользоваться кривыми, приведенными на фиг. 1.7, где Pn T) —вероятность внезапных отказов одного транзистора в системе, состоящей из логических схем и запускающих каскадов, а Рм С) — вероятность постепенного отказа из-за изменения параметров только логических схем. Эти кривые показывают, что при увеличении допусков на параметры элементов вероятность Pn T) возрастает вследствие влияния дополнительных транзисторов и увеличения тепловых нагрузок при повышении уровня мощности схемы, а вероятность Рм С) уменьшается из-за расширения пределов допусков на элементы логических схем.  [c.26]

Как известно, он содержится в гипотезе Фурье о пропорциональности между удельным тепловым потоком в М ш градиентом температуры. Ее логическим следствием в сочетании с законом сохранения энергии является известное уравнение теплопроводности Фурье  [c.18]

Построенное на указанных концепциях классическое учение о превращении тепла в работу образует единую строго логическую стройную теорию. Однако ограниченность этих концепций, вызывающая исключение ряда реальных факторов процессов превращения тепла в работу из рассмотрения, делает необходимым создание термодинамической теории современных тепломеханических систем, основанной на иных концепциях и на другой модели теплового двигателя.  [c.5]


Произведенный выше общий физический анализ качественного различия между воздействием миграции теплоносителя и воздействиями теплового контакта и контурной деформации логически приводит к постановке главной методологической проблемы учения о превращении тепла в работу при переменной массе рабочего тела — проблемы установления термодинамической природы воздействия, воспринимаемого или производимого рабочим телом, при миграции теплоносителя.  [c.19]

Составление и отладка программы многовариантных расчетов — трудоемкий процесс. При исследовании вариантов тепловых схем структура их может изменяться. При многократных изменениях числа элементов схемы и их взаимосвязи нецелесообразно изменять программу. Удобнее ввести в исходную информацию специальные условные числа (коды), определяющие число элементов (отсеков, турбин, подогревателей и др.), их основные характеристики и взаимосвязь. Эти коды составляют основу логической информации, отсутствующей при ручных расчетах.  [c.176]

Алгоритм вычисления критериев оптимизации. Алгоритм вычисления критериев оптимизации й ,. и С р представляет собой совокупность уравнений и логических условий, с помощью которых значения В,,,, и С р могут быть вычислены для любых совокупностей значений xi, хг, х,. При этом необходимо учитывать неравномерность годовых графиков тепловых нагрузок технологических и сантехнических потребителей теплоты. Годовые графики разбивают на несколько характерных расчетных периодов времени, для каждого из которых определяют fi p, и Спр, и затем их суммируют. Увеличение числа расчетных периодов Лр.п повышает точность расчета В р и С р, однако при этом повышается размерность задачи из-за увеличения числа оптимизируемых параметров X пропорционально Пр п- Для возможности решения данной задачи на мини-ЭВМ ниже рассматривается пример расчета бпр всего для двух расчетных периодов — летнего (отопительная нагрузка отсутствует) и зимнего равного по продолжительности отопительному периоду) сезонов. Число оптимизируемых параметров при этом равно 24 (по 12 для летнего и зимнего сезонов).  [c.258]

Математическая модель тепловой схемы — это совокупность параметров и математических соотношений (уравнений, неравенств, логических условий и др.), описывающих процессы в технологическом оборудовании установки с детализацией, отвечающей поставленным задачам.  [c.362]

Моделирование на основе элементов оборудования позволяет собрать тепловую схему ПТУ из заранее определенного множества типов элементов. Как правило, этот способ требует преобразования исходной тепловой схемы в расчетную. Расчетный элемент (иначе узел) — это часть расчетной схемы, для которой проводится комплекс вычислительных операций, являющихся частью общего расчета. Расчетный узел соответствует како-му-либо технологическому элементу оборудования установки, его части или группе взаимосвязанных элементов, но может не иметь прообраза в исходной схеме и вводиться для проведения необходимых расчетно-логических операций. Узлам с общим алгоритмом расчета присваивается один и тот же признак типа узла.  [c.363]

Метод тепловых схем замещения (ТСЗ) основан на использовании тепловых сопротивлений, которые соединяются в тепловую сеть, имитирующую реальные пути передачи тепловых потоков в машине. Метод ТСЗ можно рассматривать как логическое продолжение метода одномерного температурного поля, когда упрощение выполняется для всех трех координатных осей. Можно также провести аналогию с методом сеток, рассмотрев тепловую схему как сетку с укрупненными ячейками. Метод ТСЗ получил наиболее широкое распространение ввиду относительной простоты и достаточной точности расчета. Недостаток метода ТСЗ заключается в том, что он дает не полную картину температурного поля, а только некоторые средние значения температуры для отдельных элементов машины. Возникающая при этом погрешность метода не превышает 4 % для средней и 7,5 % для максимальной температуры [4].  [c.625]

Изложенные выше соображения позволяют сделать вывод о том, что движущей силой теплопередачи является разность температур. Следовательно, на данном этапе можно было бы попытаться определить тепло как переходную форму энергии, обусловленную разностью температур , как это и делают, по существу, многие авторы. Это соответствовало бы обратной логической последовательности по сравнению с принятой здесь, поскольку вначале (разд. 6.2) мы определим тепловое взаимодействие, а затем (разд. 6.6) разность температур будет введена на основе представления о тепловом взаимодействии.  [c.24]

Подобно тому как в гл, 3 при определении работы мы рассматривали условия, которые позволили описать взаимодействие, осуществляющее только работу, так и в настоящей главе, определяя тепло, мы воспользовались различными дополнительными условиями, благодаря которым оказалось возможным описать чисто тепловое взаимодействие. Для этого пришлось исключить возможность того, что Б рассматриваемом взаимодействии совершается работа, так что чисто тепловым мы назвали взаимодействие между двумя связанными системами, каждая из которых вначале была изолирована и находилась в устойчивом состоянии до установления теплового контакта. Далее мы отметили, что на основе принципа состояния, полученного в разд. 5.7 в качестве следствия закона устойчивого равновесия, можно установить, что при переходе связанной системы из одного устойчивого состояния в другое за счет чисто теплового взаимодействия для описания нового устойчивого состояния системы достаточно задать изменение одной лишь энергии. Это позволило получить логическим путем выражение для количества тепла, поглощаемого системой в результате чисто теплового взаимодействия, приравняв его к увеличению энергии системы. Не привлекая любой из так называемых принципов сохранения энергии , можно установить, что единицей измерения тепла служит та же величина, которая раньше упоминалась как единица измерения работы и энергии.  [c.81]


В случае теплоизолированной системы тепловые потоки через границу отсутствуют, так что второй член в выражении (12.20), соответствующий потоку тепла, равен нулю. Далее, если в такой изолированной системе Z совершается внутренне необратимый процесс, то Д5с положительно, а следовательно, ASz также положительно. Таким образом, если из начального устойчивого состояния в результате необратимого адиабатического процесса система переходит в конечное устойчивое состояние, то ее энтропия возрастет. Это утверждение рассматривалось в качестве так называемого принципа возрастания энтропии. Следует, однако, отметить, что справедливость этого утверждения была установлена нами путем логического развития изучаемого предмета, так что у нас нет нужды называть его принципом (или законом ).  [c.179]

Логическую информацию о составе тепловой схемы, характеристике и взаимосвязи ее элементов можно представить также, используя метод графов и матриц.  [c.511]

Классическая термодинамика основана на немногих эмпирических результатах, которые были систематизированы, обобщены и сформулированы в виде трех законов . Эти законы позволяют вывести огромное число соотношений между различными величинами, характеризующими механические и тепловые процессы. Равновесная термодинамика занимает уникальное положение в физике в силу своей идеальной логической структуры. Однако термодинамике присущи свои слабости и недостатки. Прежде всего термодинамика дает соотношения между различными параметрами, но  [c.142]

Павловский оптимизм, основанный на экспериментальных фактах изучения высшей нервной деятельности животных и человека, позволяет нам сделать логически строгий вывод о необычайном богатстве научной проблематики для будущих поколений механиков. Ведь механическое движение сопутствует всем высшим формам движения, и часто изучение какого-либо процесса требует совместного рассмотрения закономерностей различных форм движения. Так, например, изучение пограничного слоя газа на обтекаемой (омываемой) поверхности головной части межконтинентальной баллистической ракеты требует кроме уравнений динамики и уравнения сохранения массы, учета тепловых процессов (т. е. рассмотрения законов термодинамики) и привлечения закономерностей хи-мической кинетики  [c.15]

Наряду с борновским существует другой критерий прочности кристаллов, физически менее обоснованный и ясный. Он основан на предположении о связи процессов разрушения и пластической деформации с плавлением, в связи с чем называется термодинамическим [263]. В рамках этого критерия теоретическая прочность связывается с основной характеристикой плавления — скрытой теплотой перехода. Поскольку последовательная логическая схема получения такого соотношения отсутствует, данный критерий получил различные математические формулировки [263-267]. Наиболее удачная из них [265] позволяет устранить существовавшее ранее расхождение (в 2 Ч- 5 раз) между теоретической и экспериментально наблюдаемой прочностью кристаллов. Успех термодинамического подхода обусловлен тем, что отнесенная к единице объема скрытая теплота плавления оказывается величиной того же порядка, что и предел прочности кристалла, а деформация разрушения соизмерима с величиной теплового расширения от данной температуры до температуры плавления. Хотя справедливость термодинамического критерия разрушения  [c.298]

Тепловой расчет котла на ЭВМ сводится к выполнению в определенной последовательности арифметических и логических операций. Совокупность кодов, реализующих эту последовательность, называется программой расчета. Программа разбивается на блоки, имеющие конкретное целевое назначение. В качестве исходной информации составляется расчетная схема котла с указанием последовательности включения обогреваемых поверхностей нагрева н движения рабочих сред. Приведенная в [5, 6] логическая информация представляет собой описание расчетной схемы, характеризует каждую поверхность нагрева для выбора и определения физических параметров рабочих сред, характера теплообмена, коэффициентов теплопередачи и пр.  [c.418]

Для осуществления рабочего процесса тепловой трубы необходимо, чтобы ее фитиль оставался все время насыщенным жидкой фазой теплоносителя. К настоящему времени сконструированы трубы с различными теплоносителями от криогенных жидкостей До жидких металлов. По этому признаку тепловые трубы можно подразделить на криогенные, трубы для умеренных температур и жидкометаллические. Границей между криогенными и трубами для умеренных температур является 122 К, а между трубами для умеренных температур и жидкометаллическими температура 628 К. Эти границы логически обоснованы, так как 1) нормальные точки кипения так называемых постоянных газов таких, как водород, неон, азот, кислород и метан, лежат ниже 122 К, 2) точки кипения таких металлов, как ртуть, цезий, натрий, литий и серебро, лежат выше 628 К, 3) обычно все применяемые хладагенты и жидкости такие, как хладон, метанол, аммиак, вода, кипят при нормальном атмосферном давлении при температурах между 122 и 628 К- Кроме того, из наблюдений было установлено, что для большинства рабочих тел свойства, оказывающие наибольшее влияние на эффективность тепловой трубы, особенно благоприятны в окрестностях нормальных точек кипения жидкостей. Нормальные точки кипения некоторых жидкостей и целесообразные интервалы температур упомянутых классов тепловых труб указаны на термометре с логарифмической шкалой, изображенном на рис. 1.3.  [c.17]

Всякое термодинамическое исследование представляет собой логическое развитие применительно к рассматриваемым явлениям двух основных начал термодинамики и тепловой теоремы, из которых математическим путем выводятся относящиеся сюда закономерности. Эти частные закономерности будут столь же достоверны, как и сами фундаментальные законы, положенные в основу термодинамики, а само термодинамическое исследование может применяться к самым разнообразным физическим явлениям и процессам. Из этого становится ясной исключительная сила и всеобщность термодинамического метода.  [c.7]

В тех задачах механики, где приходится иметь дело с качественными изменениями форм движения и наблюдать переходы от простейшей механической формы движения к более сложным (например, тепловым в аэродинамике больших скоростей, в гидромеханике вязкой жидкости), нельзя достигнуть удовлетворительных результатов, исследуя только количественную сторону механического движения. Более сложные формы движения материи (теплота, свет, электричество) содержат в себе простое механическое движение, но полностью им не объясняются и не исчерпываются. Изучение механических движений является пер-вой, наиболее простой и логически естественной задачей современной науки.  [c.9]

Ведомственный контроль за состоянием средств изме рений на электростанциях и в тепловых сетях осуществляют метро логические службы или подразделения, выполняющие функции метрологической службы, действующие в соответствии с Положением о метрологической службе Министерства энергетики и электрификации СССР (эксплуатация энергосистем) .  [c.210]

По принципу действия аппараты управления могут быть механические (концевые или путевые ограничители, центробежные реле скорости, блокировочные выключатели, указатели уровня), электромеханические (реле, распределители), электромашинные (усилители, реле скорости), электромагнитные (распределители, датчики, усилители, концевые или путевые ограничители, логические устройства, логические элементы, дешифраторы), электронные (усилители, выпрямители, триггеры, датчики, логические элементы, запоминающие устройства, телевизионные устройства, дешифраторы), пневматические (реле, датчики, логические элементы), гидравлические (реле, датчики, указатели давления и уровня), тепловые (реле, датчики), фотоэлектрические (реле, концевые и путевые ограничители, считывающие устройства).  [c.79]


Проектирование выпарных станций связано с проведением ряда расчетов, логически связанных между собой, вытекающих друг из друга и выполняемых один за другим в определенной последовательности материальный, тепловой, конструктивный, гидродинамический, механический и технико-экономический.  [c.163]

Энтропия. Необратимость тепловых явлений логически противоречит попыткам их объяснения на основе корпускулярной теории, поскольку законы механики полностью обратимы. Следовательно, или не является правильным это объяснение, или не верен сам второй зажон термодинамики. В первом случае возникшее противоречие можно связать с гипотетичностью существования атомов и усматривать в этом доказательство несправедливости атомной гипотезы. Во втором случае можно оспаривать справедливость второго начала, что безуспешно пытались делать некоторые ученые. Но был и третий путь — г уть глубокого анализа супщости различий между обратимыми и необратимыми процессами.  [c.80]

Анализ особенностей тепловых процессов, выполненный Р. Клаузиусом, был далеко не очевиден, но логически безупречен. Обратив внимание на то, что формулировка второго закона термодинамики носит качественный характер, он задался целью найти его математическую форму. Он считал необходимым связать второй закон с некоторой характерной физической величиной, аналогично тому, как первый закон оказался связанным с существова1шем энергии, явился законом ее сохранения и превращения. Максимальный КПД идеальной тепловой машины, как впервые показал С. Карно, определяется соотношением  [c.81]

Замкнутая циркуляция жидкости ( ис. 10.5) часто используется в мощных гидроприводах вращательного движения выходного звена (в частности, в подающих частях очистных комбайнов). В некоторых случаях для улучшения теплового режима гидропривода и использования фильтров низкого давления 9 часть отработавшей жидкости в гидродвигателе сливается в бак 7, а другая часть вместе с жидкостью, подаваемой подинточным насосом, поступает в основной насос /. На схеме (см. рис. 10.5) пунктиром показано подключение к кольцевой линии узла, обеспечивающего слив в бак 7 части отработавшей жидкости. В состав узла входят регулятор потока 8 и клапан 4 с логической функцией И . Этот  [c.154]

В тепловом и электрическом блоках производится расчет соответствующих полей. Информационно-логический блок осуществляет ввод и вывод информации, а также взаимодействие остальных частей программы, определяемое конкретной структурой нагревателя и режимом его работы. Тепловой расчет выполняется конечно-рааностным мe o.дo f, а электрический — по описанной ранее программе численного расчета немагнитных цилиндрических систем.  [c.133]

Машины делят на две большие группы машины-двигатели и рабочие мйшины. Машинами-двигателями называют такие машины, в которых один вид энергии (электрической, тепловой, сжатого воздуха или поднятой воды и т. п.) преобразуется в энергию движения исполнительных органов рабочих машин. К рабочим машинам относят машины, предназначенные для облегчения и замены физического труда человека по изменению формы, свойств, СОСТОЯНИЯ, размеров и положения обрабатьтаемых материалов и объектов, а также для облегчения и замены его логической деятельности по выполнению расчетных операций и опера-  [c.7]

Применение инфракрасного излучения для наведения снарядов было вполне закономерным, так как большинство военныхцелей излучает большую часть тепловой энергии именно в инфракрасном диапазоне спектра. Тактика бомбометания также требовала создания таких устройств, которые позволили бы самолету-бомбардировщику выйти из боя сразу же после сброса бомбы. Для решения этой проблемы необходимо было создать устройство, которое было бы способно принять на себя часть логических функций, исполняемых летчиком. Идея создания такого устройства (ракеты с тепловой головкой самонаведения) принадлежит русскому ученому К. Э. Циолковскому [67].  [c.383]

Пример представления логической и тформации для тепловой схемы турбины К-300-240 в виде массивов восьмеричных кодов приведен ниже.  [c.27]

Для запуска логического триггера запускающий каскад должен содержать четыре транзистора (два транзистора в схеме однотакт-ного мультивибратора и два транзистора в дополнительном эмит-терном повторителе). Если принять, что гипотетическая интенсивность внезапных отказов транзисторов равна 0,002 для заданного периода времени и возрастает на 0,01 на каждый процент увеличения допусков на резисторы и напряжение питания (таким образом учитывается возрастание тепловых нагрузок на транзисторы при увеличении уровня допусков схемы), то можно показать, что вероятность отказа каждого транзистора будет равна  [c.25]

Процесс формирования отливок складывается из самых различных явлений — гидродинамических, физико-химических, тепловых и т. д. Естественно, что теория формирования отливок может быть лишь последовательно макрофизической. В связи с этим особое значение имеет вопрос о строении логического и исследовательского аппарата теории и о его соответствии характеру рассматриваемых технических и технологических задач.  [c.144]

На Харьковском турбинном заводе была поставлена задача разработать методику расчета тепловых схем применительно к ЭЦВМ типа Урал-2 и Урал-4 , по возможности свободную от указанных выше недостатков [65]. Тепловая схема также моделируется некоторой графовой структурой. Узлы графа соответствуют элементам тепловой схемы, дуги отражают технологические связи между элементами. При задании информации для ЭЦВМ о структуре графа узлы нумеруются в последовательности, которая в дальнейшем предопределяет общее направление расчета схемы. Связи, представляемые дугами, могут быть по одному или нескольким параметрам, что отражается кодами, записываемыми вручную на конкретном машинном языке. Узлы графа кодируются ЭЦВМ в зависимости от кодов дуг, инцидентных узлам. Математическое описание узлов осуществляется при помощи пяти операторов, вводимых в виде отдельных программ в память машины. В процессе расчета на основании анализа кодов узлов и дуг производится обращение к необходимому оператору. Поскольку при этом, естественно, приходится широко использовать логические операции, авторы методики сочли необходимым применить и тщательно отработать для этого случая аппарат логическо-числовых функций.  [c.56]

Закон Фика используется также при построении теории диффу-SHOHHoro пограничного слоя, являющейся по существу логическим продолжением рассмотренных в предыдущих главах теорий динамического и теплового пограничных слоев. Поатому излагаемую в трех последних главах упрощенную теорию конвективного массопереноса читатель будет изучать на хорошо знакомой основе. Массоперенос со всеми своими ответвлениями — предмет весьма обширный и сложный. Главы 14—16 следует, разумеется, рассматривать лишь в качестве краткого введения в этот предмет.  [c.352]

Логическую информацию о составе тепловой схемы, характеристике и взаимосвязи ее элементов можно яредставить так же, используя метод графов и матриц. Каждый элемент расчетной схемы при этом должен иметь свой порядковый номер пример нумерации элементов расчетной схемы турбоустановки Т-100-130 ТМЗ был приведен на рис. 11.20,6. Алгоритм и программа расчета должны быть в достаточной мере универсальными, т. е. отвечать числу и характеру вариантов.  [c.176]

Проектирование опреснительной станции мгновенного вскипания в Порто-Торес (Италия) выполнено с помощью математических моделей, обработанных на ЭВМ, которые в последующем введены в запоминающее устройство управляющей процессом машины для наблюдения за возможными отклонениями от рассчитанных величин и их логической корректировкой в ходе эксплуатации. Цель программированного расчета сводилась к определению производительности установки по дистилляту, установлению коэффициента загрязнения поверхностей по ступеням, а также совместному расчету тепловой схемы электростанции и опреснительной установки.  [c.131]

Соображения, изложенные в разд. 5.6, позволяют сделать утверждение, получившее название принципа состояния. Однако получаемое логическим путем из закона устойчивого равновесия само по себе оно не заслуживает названия принципа или закона . Форма, в которой это утверждение было первоначальна выражено Клайном и Кенигом [7], оказалась жертвой формулировки закона устойчивого равновесия, данной Хацопулосом и Кинаном [1], которые показали, что оно является следствием ЗУР. Мы считаем, что этот принцип приносит непосредственную пользу в двух отношениях а) как обоснование для использования разности энергий в качестве меры переноса тепла (это будет сделано после того, как в следующей главе мы определим понятие о чисто тепловом взаимодействии) и б) при определении числа независимых переменных, задание которых необходимо и достаточно для полного описания устойчивого состояния простой системы. С этим вопросом мы встретимся лишь в гл. 18, в которой будет начато более подробное изучение термодинамических свойств простых систем. По определению (разд. 2.5), принцип состояния относится к связанным системам и может быть сформулирован с помош,ью следующих, несколько более конкретных терминов по сравнению с использованными в работе Клайна и Кенига  [c.69]

Усёнко В.В. Логические системы управления Пособие для работников АСУ тепловых электростанций. М. Издательство МЭИ, 2001.  [c.568]


Как отмечалось выше, проведенное доказательство содержит логическую брешь . Действительно, мы не доказали, что выражение (5.14) применимо для молекул, начинающих взаимодействовать. Было сказано лишь, что оно имеет смысл , ибо две сталкивающиеся молекулы являются как раз двумя случайно-выбранными молекулами из бесконечного (при N- 00) множества. Как это ни странно, упЪмянутая брешь не следует иа неполноты наших представлений, а обусловлена скорее сущностью-явления. В самом деле, насколько нам известно, никто не-предложил удовлетворительного доказательства гипотезы хаоса (было разработано много формальных доказательств, базирующихся на разложении 7 -частжчной функции распределения в степенной ряд по времени столкновения, однако они едва ли могут рассматриваться как удовлетворительные). И все же мы верим, что удовлетворительное доказательство можно построить на основе двух предположений — об очень большом числе молекул (М -> оо) и о пренебрежимо малом радиусе взаимодействия (а ->-0),— если их последовательно применять с самого начала, как было сделано в случае теплового равновесия. Заметим, что> стремления к пределам N- 00 и а 0) не независимы, так как N0 должно оставаться конечным (ТУ а — порядок величины правой части уравнения (6.11)). Чтобы дать представление об осуществимости этого положения, отметим, что при N 10 и (Г - 10 " см будет N(У 10 10" см = 1 м , Т. е. величина порядка площади макроскопической поверхности, в то время как, например, N0 порядка 10 10" см = 10" см = 10" м , т, е. пренебрежимо мало по сравнению с обычными макроскопическими объемами N0 — параметр, который служит мерой порядка величины отброшенных членов они становятся все более и более важными по мере увеличения плотности газа).  [c.41]

Говоря в настоящей части книги о биографиях ученых, способствовавших своими научными трудами возникновению и развитию термодинамики, надо прежде всего сказать о физических открытиях и научных трудах Ломоносова, положивших начало термодинампке. О них достаточно подробно было сказано в 1-1 и 7-2 — это опровержение Ломоносовым гипотезы теплорода, установление динамической природы тепла и механизма ее передачи, основ молекулярно-кинетической теории вещества, предельной минимальной температуры, законов сохранения материи и движения, понятия о направлении течения тепловых процессов, а следовательно, идеи о втором законе термодинамики и многое другое. Характерно для Ломоносова было такл<е и то, что все научные утверждения давались им четко отработанными, в простой и строгой форме, свидетельствовавшей о глубоко убежденности автора в высказываемых им положениях. Прп этом изложение Ломоносовым даже серьезного научного вопроса обычно было ярким и удивительно образным. В этом убеждает хотя бы формулировка Ломоносовым законов постоянства массы и движения, его высказывания о природе тепла, его логические обоснования неприемлемости для науки гипотезы теплорода и др. Напомним некоторые из формулировок законов и положений Ломоносова. Так, в письме к Эйлеру Ломоносов высказывает по существу законы сохранения материи и энергии в следующей форме Все изменения, совершавшиеся в природе, происходят таким образом, что сколько к чему прибавилось, столько же отнимается от другого. Так, сколько к одному телу прибавится вещества, столько же отнимется от другого.. . Этот закон природы является настолько всеобщим, что простирается и на правила движения тело, побуждающее толчком к дви-  [c.521]

В масштабах макромира числовое значение постоянной Плаика чрезвычайно мало. Этим объя( няется широкая применимость классической физики с лежащей в ее основе концепцией непрерывности к описанию макроскопических явлений. Решение проблемы теплового излучения исторически было первым шагом на пути к разгадке тайиы потерянной константы . Впоследствии ограниченность представлений классической физики обнаружила себя при исследовании фотоэффекта (см. 9.5) и при попытках объяснения устойчивости атомов и закономерностей в спектрах из излучения. В начале века была создана так называемая старая квантовая теория , в основе которой лежат гипотеза Планка о дискретном характере испускания и поглощения света осциллятором, введенное Эйнштейном представление о квантах света (фотонах) и уравнение фотоэффекта, построенная Бором теория простейших атомов. Но старая квантовая теория не представляла собой стройной, логически замкнутой науки. Удачно описав некоторые экспериментальные факты, она не могла дать правильного объяснения и количественного описания всего многообразия явлений микромира. С наступлением второй четверти нашего столетия начинается период создания современной квантовой теории с ее надежными логически непротиворечивыми основными положениями и адекватным математическим аппаратом.  [c.432]

В заключение остановимся на структуре теории лазера и на плане ее изложения в книге. В строгой логической форме структура теории лазера следующая. В качестве исходного мы имеем последовательное квантовое теоретическое описание атомов и светового поля, которое было дано в гл. 7 первого тома. Соответствующие уравнения описывают взаимодействие между атомами и световым полем. Но дополнительно как атомы, так и световое поле связаны с окружающей средой, например поле связано механизмом потерь с зеркалами, а активные атомы взаимодействуют с кристаллической решеткой (рис. 1.7). Взаимодействие поля и атомов с соответствующей окружающей средой ведет к затуханию и флуктуациям, которые мы рассматривали в первом томе. С учетом всего этого выводятся основные уравнения квантовой механики, описывающие лазер, который рассматривается как незамкнутая система. Если усреднить эти основные уравнения по флуктуациям тепловых резервуаров, представляющих окружающую среду, и вычислить соответствующие квантовомеханические средние, то мы придем к по-луклассическим уравнениям лазера. Исключив из этих уравнений дипольные моменты атомов и выполнив усреднение по фазам, можно получить скоростные уравнения. Скоростные уравнения имеют более простую структуру, чем полные квантовомеханические уравнения, по крайней мере в отношении интерпретации и решения. По этой причине возникает противоречие между требованием логической последовательности изложения и требованием его педагогичности.  [c.32]


Смотреть страницы где упоминается термин 101, тепловая логическая : [c.25]    [c.9]   
Системы очувствления и адаптивные промышленные работы (1985) -- [ c.143 , c.162 ]



ПОИСК



Логический



© 2025 Mash-xxl.info Реклама на сайте