Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифракция рентгеновского излучени

В ряде случаев выбор кристаллофизических осей неоднозначен. В сочетании с неоднозначностью выбора кристаллографических осей для тех же классов произвол оказывается еще большим. Это необходимо учитывать при использовании констант кристаллов, описывающих анизотропные физические свойства. Чаще всего в таких случаях установку осей связывают с данными по дифракции рентгеновского излучения от различных кристаллографических плоскостей.  [c.41]

Под рентгенографическим анализом понимается совокупность разнообразных методов исследования, в которых используется дифракция рентгеновского излучения - поперечных электромагнитных колебаний с длиной волны 10 -10- Л. Применение рентгеновского излучения для исследования кристаллических веществ основано на том, что его длина волны сопоставима с расстоянием между упорядоченно расположенными атомами в решетке кристаллов, которая для него является естественной дифракционной решеткой. Сущность рентгенографических методов анализа как раз и заключается в изучении дифракционной картины, получаемой при отражении рентгеновских лучей атомными плоскостями в структуре кристаллов.  [c.158]


Кроме того, при описании рентгеновских многослойных зеркал наряду с общими подходами широко используется ряд специфических методов, либо основанных на том обстоятельстве, что диэлектрические проницаемости всех веществ в МР-диапазоне близки к единице (метод медленных амплитуд [5, 97]), либо использующих аппарат, разработанный для описания дифракции рентгеновского излучения в кристаллах [92]. В этом параграфе мы рассмотрим несколько наиболее распространенных методов расчета многослойных рентгеновских зеркал и сравним результаты, полученные о их помощью.  [c.79]

Дифракция света, удовлетворяющая условию (9.2.4), называется брэгговской дифракцией по аналогии с дифракцией рентгеновского излучения в кристаллах. Для того чтобы оценить порядок величины угла в, рассмотрим случай дифракции света с длиной волны X = 0,5 мкм на звуковой волне частотой 500 МГц. Выбирая из табл. 9.3 скорость звука равной v- 1,5-10 м/с, имеем Л = = 3-10 м и из (9.2.4) получаем в 6-10 рад 3,6°. Условие брэгговской дифракции (9.2.4) найдено в предположении, что периодическое возмущение неподвижно относительно светового пучка. Влияние движения можно учесть, если рассмотреть доплеровский сдвиг для оптического пучка, падающего на зеркало, перемещающееся со скоростью V под углом, удовлетворяющим условию Брэгга (9.2.4). Формула для доплеровского сдвига частоты волны, отражающейся от движущегося объекта, имеет вид  [c.356]

Объясните причину этого различия. Почему мы не можем получить дифракцию света в направлениях в, отвечающих т = 2, 3,. .. [Указание предположите, что дифракция рентгеновского излучения происходит на дискретных атомных плоскостях, которые можно представить как бесконечно тонкие слои, а звуковую волну считайте непрерывной вдоль оси z см. рис. 9.2.]  [c.390]

При расчете эффектов интерференции нейтронов недостаточно просто складывать интенсивности волн, рассеянных различными рассеивающими центрами. Необходимо складывать амплитуды, учитывая должным образом разность фаз между рассеянными волнами. Обычно используемый для этого метод аналогичен тому, который применяется при изучении рассеяния света. Для медленных нейтронов явление интерференции лежит в основе явления дифракции нейтронов, которое подобно дифракции рентгеновского излучения используется для изучения кристаллической решетки [4].  [c.253]

Диссоциация электролитическая 229 Дифракция рентгеновского излучения 389  [c.569]

Все оценки способности рентгеновских лучей поглощаться и их жесткости очень затрудняются тем, что из трубки выходят очень неоднородные рентгеновские лучи, т. е. смесь лучей различной жесткости. Пропуская их через поглощающее вещество, мы задерживаем более мягкие лучи, получая таким образом более однородный пучок. Этот метод фильтрования довольно груб и не обеспечивает получения строго однородных монохроматических лучей. В настоящее время мы располагаем приемами монохроматизации, подобными применяемым в оптике обычных длин волн, т. е. методами, при использовании которых испускается почти монохроматическое рентгеновское излучение, подвергающееся дальнейшей монохроматизации при помощи дифракции. Таким образом получаются лучи, не уступающие по монохроматичности световым лучам, и для них коэффициент поглощения имеет совершенно определенный физический смысл. Для таких монохроматических лучей он зависит от плотности р поглощающего вещества и грубо приближенно может считаться пропорциональным плотности. Более точно поглощение определяется числом атомов поглощающего вещества на единице толщины слоя. При переходе же от одних атомов к другим поглощение быстро растет с увеличением атомного веса, правильнее, атомного номера Z, будучи пропорционально кубу атомного номера.  [c.406]


Особенным затруднением для гипотезы волновой природы рентгеновских лучей служили неудачи опытов, проделанных Рентгеном и рядом других исследователей с целью обнаружить интерференцию и дифракцию рентгеновских лучей. Лишь значительно позже (около 1910 г.) выяснилось, что длина волны рентгеновского излучения значительно меньше, чем у видимого света и ультрафиолетовых лучей, и поэтому первые опыты по осуществлению интерференции были заранее обречены на неудачу.  [c.407]

Если параллельный пучок рентгеновского излучения падает на кристалл, то на каждой атомной плоскости будет происходить дифракция. Максимум интенсивности дифрагировавших рентгеновских волн соответствует направлению, определяемому законами правильного отражения. Условие же взаимного усиления волн, отраженных от разных плоскостей, запишется, очевидно, в виде  [c.409]

Прежде чем перейти к изложению сущности, укажем на различие трех выше указанных дифракционных методов. Оно обусловлено различной силой взаимодействия рентгеновского, электронного и нейтронного излучений с веществом. Рентгеновское электромагнитное излучение при прохождении через кристалл взаимодействует с электронными оболочками атомов (возникающие вынужденные колебания ядер вследствие их большой массы имеют пренебрежимо малую амплитуду), и дифракционная картина связана с распределением электронной плотности, которую можно характеризовать некоторой функцией координат р(л. у, z). В электронографии используют электроны таких энергий, что они взаимодействуют, главным образом, не с электронными оболочками атомов, а с электростатическими потенциальными полями ф(х, у, Z), создаваемыми ядрами исследуемого вещества. Взаимодействие между двумя заряженными частицами (электроном и ядром атома) значительно сильнее, чем между электромагнитным излучением и электронной оболочкой атома. Поэтому интенсивность дифракции электронного излучения примерно в 10 раз сильнее, чем рентгеновского. Отсюда понятно, почему получение рентгенограмм часто требует нескольких часов, электронограмм — нескольких секунд.  [c.36]

Однако в отличие от опытов Герца при торможении электронов на аноде отсутствует колебание тока, и поэтому Стокс представил рентгеновское излучение в виде электромагнитного импульса. Окончательное выяснение природы рентгеновских лучей как электромагнитных волн стало возможным в 1912 г., когда М. Лауэ предложил опыты по дифракции рентгеновских лучей, не только доказавшие их волновую природу, но и позволившие измерять длину волны.  [c.48]

Все три способа наблюдения дифракции волн на кристаллических структурах были успешно использованы для изучения дифракции рентгеновских лучей. Это позволило экспериментально доказать электромагнитную природу рентгеновского излучения и определить длину волны рентгеновского излучения, поскольку  [c.51]

ДИФРАКЦИЯ <акустооптическая — дифракция света на неоднородностях среды, возникающих при прохождении в среде ультразвуковых волн волн — огибание волнами встречных препятствий рентгеновского излучения—рассеяние рентгеновского излучения веществом без изменения длины волны света — отклонение световых волн от прямолинейного распространения при прохождении света вблизи границ  [c.229]

Зависимость (1) предполагает пространственную однородность ноля излучения в кристалле или нерегулярное строение (искажение) кристалла и правильно описывает ослабление интенсивности излучения при его распространении в кристалле в произвольном (не дифракционном) направлении. Она также верна и при к и н е м а т и ч. дифракции рентгеновских лучей в тонком (по сравнению с длиной первичной экстинкции) кристалле. Если толщина кристал.тга йЗ>)1о то, согласно (1), и.злучение полностью поглощается в нём.  [c.89]

АНАЛИЗ [активационный — метод определения химического состава вещества с помощью регистрации излучения радиоактивных изотопов, образующихся при облучении вещества ядерными частицами люминесцентный — химический анализ вещества по характеру его люминесценции рентгенорадиометрический— анализ химического состава, основанный на регистрации рентгеновского излучения, возникающего при взаимодействии излучения радиоизотопного источника с атомами вещества рентгеноснектральный — метод определения химического состава примесей вещества по характеристическому рентгеновскому спектру его атомов рентгеноструктурный— метод исследования структуры вещества, основанный на изучении дифракции рентгеновского излучения в этом веществе спектральный — физический метод качественного и количественного анализа веществ, основанный на изучении их спектров — испускания, поглощения, комбинационного рассеяния света, люминесценции АНТИФЕРРОМАГНЕТИЗМ— магнитоупорядоченное состояние кристаллического вещества с антипараллельной ориентацией спиновых магнитных моментов соседних атомов в кристаллической решетке АЭРОДИНАМИКА—раздел аэромеханики, изучающий законы движения газообразной среды и ее взаимодействие с движущимися в ней твердыми телами АЭРОМЕХАНИКА— раздел механики, изучающий равновесие и движение газообразных сред и механическое воздействие этих сред на погруженные в них твердые тела  [c.225]

Дифракция рентгеновского излучения в монокристаллах рассматривается в литературе в приближении классической электродинамики как рассеяние электромагнитного излучения в среде с трехмерно-периодическим распределением электронной плотности. При такохМ подходе рассеивающая способность кристалла характеризуется поляризуемостью а (г) [7 ], которая может быть разложена в ряд Фурье по векторам Ь обратной решетки кристалла  [c.306]


При распространении электромагнитного излучения в периодических средах возникает много интересных и потенциально полезных явлений. К ним относятся дифракция рентгеновского излучения в кристаллах, дифракция света на периодических изменениях механических напряжений, возникающих при прохождении звуковой волны, и запрещенная зона для света в слоистых периодических средах. Эти явления используются во многих оптических устройствах, таких, как дифракционные решетки, голограммы, лазеры на свободных электронах, лазеры с распределенной обратной связью, лазеры с распределенным брэгговским отражением, брэгговские отражатели с высокой отражательной способностью, акустооптические фильтры, светофильтры Шольца и т. д. В данной главе мы рассмотрим некоторые общие свойства электромагнитного излучения в периодических средах и общую теорию его распространения в слоистой периодической среде. Эта теория имеет весьма близкую формальную аналогию с квантовой теорией электронов в кристаллах и поэтому позволяет использовать понятия блоховских волн, запрещенных зон, затухающих и поверхностных волн. Наконец, мы обсудим применение этой теории для решения ряда хорошо известных задач, таких, как расчет коэффициента отражения от брэгговского зеркала, коэффициентов пропускания фильтра Шольца и оптических поверхностных волн. Кроме того, мы обсудим двойное лучепреломление за счет формы и его применение в дихроичных поляризаторах. Периодические структуры играют также важную роль в интегральной оптике, рассмотрение которой мы отложим до гл. 11.  [c.169]

Соотношение (6.4.18) называют также условием Брэгга, поскольку оно совпадает с аналогичным условием для дифракции рентгеновского излучения в кристаллах. В этом случае падающая волна, описываемая плоской волной с пространственной зависимостью - ijSz), сильно связана с отраженной волной, у которой зависимость от координат имеет вид exp -ik y -f- ifSz). Постоянная (3 является составляющей волнового вектора, перпендикулярной соответствующим кристаллическим плоскостям. Из условия  [c.200]

Уже в первых работах по исследованию дифракции рентгеновского излучения на внедренных в бакелитовую матрицу аэрозольных частицах РЬ D 200Л [512, 564], Sb, Bi, Sn (D 250 A [512]), Gu Dev 272 и 1300°A), Au (D p = 234 и 950 A) [565] было обнаружено аномальное ослабление рассеянного излучения с ростом температуры. Если этот эффект полностью отнести за счет действия фактора Дебая—Валлера, то в квазигармоническом приближении, учитывающем тепловое расширение частиц по формуле Грюнайзена (см. [8, 512]), получаются следующие значения отношения т] = 0/Эа> 0,84 (Т = 40 К) для РЬ 0,877 (20 °С) для Au и --0,9 (20 °С) для Си. Затем пониженные значения 9 сообщались также при рентгено- и электронографическом исследованиях аэрозольных частиц Ag [566, 567] и Au [568, 569]. Например, для частиц Ag средним диаметром 150 А получено т] = 0,735 [567], а для частиц Au средним диаметром 20 А - т] = 0,69 [569].  [c.197]

Данные дифракции электронов. Основным методом исследования поверхностной кристаллофафии является дифракция медленных электронов (ДМЭ), упруго отраженных от поверхности твердого тела. Это явление было открыто в 1927 г. Дэвиссоном и Джер-мером в знаменитых экспериментах, доказавших волновую природу элементарных частиц. Преимущество метода ДМЭ по сравнению с методами дифракции рентгеновского излучения и нейтронов, традиционно применяющихся в исследованиях объемных фаз в том, что электроны взаимодействуют с атомами в миллионы раз сильнее, чем фотоны и нейтроны. Интенсивность рассеяния электронов 4 на 6—7 порядков выше, чем для фотонов и тем более для нейтронов.  [c.132]

Формула (9.8) указывает, что при угле падения 0(, решетка периода d дает такое же угловое расхождение главных максимумов разных порядков, как в случае нормального падения (0о = О) решетка с меньшим периодом d = d osQ . В случае скользяш,его падения (0q близко к тс/2) d гораздо меньше, чем d. Поэтому при скользяш,ем падении получаются сильно рас-ходяш,иеся дифрагированные пучки даже от таких решеток, период которых очень велик по сравнению с длиной волны. Удается наблюдать, применяя очень косое падение, дифракцию рентгеновского излучения (X порядка 10 см) на оптической дифракционной решетке d порядка 10" см).  [c.362]

I прцктурах). При дифракции рентгеновского излучения л монокристаллах (11.1.6.4") дифрг .кционная картина имеет вид отдельных пятен, правильно располо>ке ных вокруг центрального пятна (рис. У.З.Э). Прн дифракции на поликристаллах (11.1.6.4°) дифракционная картииа имеет вид симметрично расположенных концентрических колец (рис. У.З.Ю). С по.мощью изучения расположения дифрак-  [c.389]

Имея своим истоком идеи древних философов, теория атомного или дискретного строения вещества получила всеобщее признание только в начале 20-го столетия. Это было связано с успехами в области рентгеноскопии, когда для изучения микроструктуры вещества последнее помещалось в пучок рентгеновского излучения и на фотопластинке фиксировалось отображение пучка после прохождения его через слой исследуемого вещества. Диапазон длин волн рентгеновского излучения был сопоставим с межатомным расстоянием, и, при условии абсолютного равенства этих параметров, дифракция у - лучей на отдельных атомах приводила к появлению интерференционной картины. Это было интерпретировано следующим образом вещество состоит из дискретных элементов (атомов), которые образуют строго упорядоченную пространственную решетку с определенным значением периода реше1ки, характерного для данного вещества. Подобные исследования были проведены для различных веществ. Практически все твердые тела обнаруживают при рентгеновском облучении наличие интерференционной картины, тогда как в газах, жидкостях и стеклах интерференционную картину обнаружить не удавалось. В связи с этим возникло разделение вещества па упорядоченное, или кристаллическое, и неупорядоченное, или аморфное.  [c.47]

Используя очень косое падение излучения, удалось получить ясно выраженную дифракцию рентгеновских лучей со сравнительно грубой решеткой (d ж 0,02 мм, Комптон и Дьюэн, 1925 г.). Впоследствии по этому методу были получены превосходные дифракционные спектры и с большой точностью были измерены длины волн рентгеновского излучения. Этот метод измерения является в настоящее время наиболее совершенным (ср. 118).  [c.205]

Условие дистракции Вульфа-Брэгга. Рассмотрим геометрическое условие дифракции на кристалле диафрагмированного монохроматического пучка излучения. Это условие (закон Вульфа—Брэгга) применимо для дифракции рентгеновских лучей, электронов, нейтронов.  [c.55]

На основании дифракционных явлений были созданы приборы, позволяющие измерить с большой точностью длины волн рентгеновского излучения. Это открыло дорогу к широкому кругу экспериментов в области физики рентгеновских лучей, приведших к открытию новых явлений, например эффекта Комптона (см. 2). Основанный на этих явлениях рентгеноструктурный анализ остался и до настояидего времени одним из очень эффективных методов изучения структуры вещества. Использование дифракции на кристаллах для управления рентгеновскими лучами лежит в основе рентгеновской оптики, получившей особенно большое развитие в последние годы.  [c.52]


При анализе текстуры по полюсным фигурам, по> строенным по данным рентгеновского анализа, необходимо учитывать их ограниченность, связанную с недостаточно высокой чувствительностью метода. Интенсивность дифрагированных лучей от тех текстурных компонент, вес которых невелик, будет также малой и может оказаться незамеченной регистрирующим устройством на общем фоне рассеянного рентгеновского излучения. В результате эти слабые текстурные компоненты будут отсутствовать на полюсной фигуре. Вместе с тем роль таких слабых компонент, особенно в процессах тексту-рообразования при рекристаллизации, часто оказывается решающей. Поэтому в случаях, когда слабые компоненты могут играть важную роль, для их выявления нужно применять специальные локальные методы (например, дифракцию электронов или метод фигур травления).  [c.271]

Метод Шеррера [88] основан на том, что при уменьщении размеров зерен растет доля рентгеновского излучения, рассеянного с отклонением от закона дифракции Вульфа-Брэгга, в результате чего рентгеновские пики на рентгенограммах уширяются.  [c.71]

Рентгеновский абсорбционный микроанализ. Для решения ряда практических задач может быть использован метод рентгеновского абсорбционного микроанализа (РАМА). При этом методе, который является составной частью рентгеновской проекционной микроскопии (РПМ), не требуется сложная дорогостоящая аппаратура. Метод РПМ основан на получении увеличенной теневой проекции объекта в расходящемся пучке рентгеновского излучения, испускаемого точечным источником. Разрешение ироекцион-ного метода, лимитируемое размерами источника (величиной полутени) и френелевской дифракцией, достигает  [c.498]

Т. к. углы (Хо, pQ, Yo фиксированы, а а, Р, у пе независимы, то система (1) обычно имеет Kpaime мало целочисленных решений, т. е, при рассеянии монохроматич. рентгеновского излучения на 1шподвижиом кристалле число дифракц. максимумов мало.  [c.671]

Взаимосвязь макро- и микропараметров среды была обоснована микроскопич. электронной теорией X. А. Лоренца (1880), рассматривающей электрон (атом) как осциллятор, а среду как набор частиц-осцилляторов. Падающая световая волна вызывает колебания в частицах, в результате чего они излучают волны, когерентные с падающей. Вторичная волна одного атома действует на др. атомы и вызывает их дополнит, излучение интерференция всех этих волн с падающей объясняет все явления отражения и преломления. Если расстояние между частицами X (что справедливо для оптич. диапазона) и если плотность частиц одинакова во всём объёме среды, то расчёт по молекулярной теории приводит к тем же выводам, что и феноменологич. теория. Именно в среде вторичные волны гасят падающую и создают прелом.чённую вне среды интерференция вторичных волн приводит к образованию отражённой волны с амплитудой, описываемой ф-лами Френеля. Если расстояние между частицами сравнимо с А. (в ренте, области), то феноменологич. теория неправомерна. необходим другой подход (см. Дифракция рентгеновских лучей). Тепловое движение частиц нарушает постоянство их плотности и приводит к новому явлению — молекулярному рассеянию света.  [c.512]

Брэгговская оптика кристаллов. При взаимодействии рентг. излучения с кристаллом, когда выполняются условия Брэгга — Вульфа, возникает брэгговское отражение (см. Дифракция рентгеновских лучей). Это явление легло в основу рентгеноспектральных методов (см. Рентгеновская спектральная аппаратура), а также методов рентгеновской топографии. Диапазон спектра, в к-ром может использоваться тот или иной кристалл, определяется постоянной решётки 2d и диапазоном изменения (обычно от 3—5° до 60—70°) угла Брэгга б (угла между плоскостью кристалла и направлением падающего пучка). Кристаллы СО структурой, близкой к идеальной, имеют наиб, высокую разрешающую силу — энергия рентг. кванта,  [c.347]

Дифракция ЖР-иалучения на совершенном кристалле благодаря регулярному расположению атомов крис-таллич. структуры носит динаынч. характер (динамич. дифракция см. Дифракция рентгеновских лг/ней). Это означает, что многократное рассеяние излучения на кристаллич. плоскостях сохраняет свои когерентные свойства, в результате чего амплитуда дифраги-ров. Волн становится сравнимой с амплитудой проходящей волны. Интерференция дифрагированных и проходящей волн приводит к образованию результирующего волнового поля в кристалле, к-рое может быть представлено а виде суперпозиции волн, получивших назв.. блоховских. Эфф. длина блоховской волны в кристалле принимает значение от единиц до десятков мкм, что существенно снижает требования к изготовлению ревтгенооптич. влементов.  [c.348]


Смотреть страницы где упоминается термин Дифракция рентгеновского излучени : [c.293]    [c.273]    [c.682]    [c.201]    [c.185]    [c.414]    [c.37]    [c.26]    [c.411]    [c.157]    [c.231]    [c.682]    [c.578]    [c.578]    [c.351]    [c.361]   
Справочное руководство по физике (0) -- [ c.389 ]



ПОИСК



Дифракция

Излучение рентгеновское

Рентгеновское излучение. Формула Брэгга Вульфа. Методы наблюдения дифракции волн на кристаллах. Способ Лауэ, Способ Брэгга. Способ ДебаяШерера. Учет преломления рентгеновских лучей Эффект Рамзауэра-Таунсенда



© 2025 Mash-xxl.info Реклама на сайте