Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизмы термоупругяй эффект

Причиной характерных особенностей, наблюдаемых при растяжении, является, как показано ниже, своеобразие механизма деформации термоупругой мартенситной фазы, образующейся вблизи комнатной Т. Тот факт, что в сплавах Ti—Ni в противоположность углеродистой стали мартенситная фаза значительно мягче высокотемпературной, является важным свойством, обусловливающим возможность использования эффекта памяти формы.  [c.70]

Весьма перспективен нагрев поверхности лучом лазера. Излучение происходит под действием нескольких эффектов. При небольших значениях интенсивности падающего светового потока происходит импульсное локальное расширение объема вблизи поверхности ОК. Эти деформации передаются соседним зонам, порождая упругие волны. При этом амплитуда ультразвуковых колебаний пропорциональна повышению температуры металла и достигает наибольшего значения при температуре плавления. В этой области реализуется термоупругий механизм генерации ультразвука.  [c.227]


Даже после того, как были даны пояснения по поводу многих внешних источников демпфирования, все еще остается очень большое число механизмов, с помощью которых энергия при колебаниях может поглощаться внутри некоторого малого элемента материала при его циклическом демпфировании. Мы не станем пытаться объяснить все эти механизмы, а остановимся на некоторых из них, представляющихся наиболее существенными. Эти механизмы приведены в табл. 2.1 [2.14] для тех диапазонов частот и температур, в которых они, как правило, наиболее эффективны. Все рассмотренные здесь маханизмы связаны с внутренними перестройками микро- или макроструктур, охватывающими диапазон от кристаллических решеток до эффектов молекулярного уровня. Сюда входят магнитные эффекты магнитоупругий и магнитомеханический гистерезис), температурные эффекты (термоупругие явления, теплопроводность, температурная диффузия, тепловые потоки) и перестройка атомарной структуры (дислокации, локальные дефекты кристаллических решеток, фотоэлектрические эффекты, релаксация напряжений на границах зерен, фазовые процессы, учитываемые в механике твердого деформируемого тела, блоки в по-ликристаллических материалах и т. п.) [2.15—2.18].  [c.77]

Изучение структурных и энергетических закономерностей пластической деформации в приповерхностных слоях материалов в сравнении с их внутренними объемными слоями имеет важное значение для развития теории и практики процессов трения, износа и схватывания. При этом следует отметить, что. поверхностные слои кристаллических материалов имеют, как правило, свои специфические закономерности пластической деформации. Так, например, в работе [11 при нагружении монокристаллов кремния через пластичную деформируемую среду силами контактного трения было найдено, что в тонких приповерхностных слоях на глубине от сотых и десятых долей микрона до нескольких микрон величины критического напряжения сдвига и энергии активации движения дислокаций значительно меньше, чем аналогичные характеристики в объеме кристалла. Было также показано [2], что при одинаковом уровне внешне приложенных напряжений по поперечному сечению кристалла в радиусе действия дислокационных сил изображения эффективное напряжение сдвига значительно выше, чем внутри кристалла. Поэтому поверхностные источники генерируют значительно большее количество дислокационных петель и на большее расстояние от источника по сравнению с объемными источниками аналогичной конфигурации и геометрии при одинаковом уровне внешних напряжений. Высказывалось также предположение, что облегченные условия пластического течения в приповерхностных слоях обусловлены не только большим количеством легкодействующих гомогенных и различного рода гетерогенных источников сдвига [3], но и различной скоростью движения дислокаций у поверхности и внутри кристалла [2]. Аномальное пластическое течение поверхностных слоев материала на начальной стадии деформации может быть обусловлено действием и ряда других факто-зов, например а) действием дислокационных сил изображения 4, 5] б) различием в проявлении механизмов диссипации энергии на дислокациях, движущихся в объеме кристалла и у его поверхности причем в общем случае это различи е, по-видимому, может проявляться на всех семи фононных ветвях диссипации энергии (эффект фононного ветра, термоупругая диссипация, фонон-ная вязкость, радиационное трение и т. д.) [6], а также на электронной [71 ветви рассеяния вводимой в кристалл энергии в) особенностями атомно-электронной структуры поверхностных слоев и их отличием от объема кристалла, которые могут проявляться во влиянии поверхностного пространственного заряда и дебаевского радиуса экранирования на вели-  [c.39]


Механизмом, определяющим свойства памяти формы , является кристаллографическое обратимое термоупругое мартенситное превращение — эффект Курдюгиова. Термоупругое мартенситное превращение сопровождается изменением объема, которое носит обратный характер, обеспечивая память . В сплавах с эффектом памяти формы при охлаждении происходит рост термоупругих кристаллов мартенсита, а при нагреве — их уменьшение или исчезновение. Эффект памяти формы наиболее хорошо проявляется, когда мартенситное превращение происходит при низких температурй х и в узком интервале температур, иногда порядка нескольких градусов.  [c.375]

Таким образом, независимо от того, происходит ли превращение по атермическому или изотермическому типу, отдельные кристаллы мартенсита образуются и растут с очень большой скоростью. Даже при понижении температуры или с течением времени скорость роста кристаллов мартенсита не увеличивается. Механизм превращения, характеризующийся такими особенностями, называют нс рмоупругим. При термоупругом превращении первоначально образовавшиеся отдельные кристаллы мартенсита растут при понижении температуры со скоростью, соответствующей скорости охлаждения. При этом скорость роста может оказаться столь малой, что превращение можно наблюдать даже невооруженным глазом. При нагреве происходит обратный процесс уменьшение кристаллов. Указанное термоупругое мартенситное превращение играет основную роль в проявлении эффекта памяти формы.  [c.14]

Среди физич. механизмов, обусловливающих затухание звука в кристаллах, можно выделить следующие рассеяние звука на микродефектах, поглощение, обусловленное термоупругими и тепловыми эффектами, дислокационное поглощение, поглощение, вызванное взаимодействием упругой волны с тепловыми колебаниями кристаллич. решётки — фононами (см. Поглощение звука) , кроме того, в металлах и полупроводниках существует специфич. вид поглощения звука, обусловленный взаимодействием ультразвука с электронами проводимости, в ферромагнитных кристаллах дополнительное поглощение УЗ обусловлено движением доменных стенок и спин-фононным взаимодействием, в сегнетоэлектрич. кристаллах наблюдается специфич. возрастание поглощения вблизи точки фазового перехода (см. Сегнетоэлектр ичество).  [c.296]

Механизмом, определяющим свойства памяти формы , является кристаллографически обратимое термоупругое мартенситное превращение — эффект Кур-дюмова.  [c.301]


Возбуждение и распространение сейсмических волн (1986) -- [ c.139 ]



ПОИСК



Термоупругость

Эффект термоупругий



© 2025 Mash-xxl.info Реклама на сайте