Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержнн Напряжения касательные при кручении стесненном

При несвободном (стесненном) кручении, когда депланация сечений затруднена, приведенные выше формулы непригодны. Общая теория стесненного кручения тонкостенных стержней открытого профиля разработана В. 3. Власовым. Он показал, что при стесненном кручении кроме касательных напряжений чистого кручения, вычисляемых по приведенным выше формулам, в поперечном сечении возникают значительные дополнительные касательные и нормальные напряжения. Изложение теории стесненного кручения тонкостенных стержней выходит за пределы краткого курса сопротивления материалов.  [c.123]


Знаки касательных напряжений при изгибе и кручении указаны в соответствии с правилами, принятыми в соответствующих разделах курса сопротивления материалов. Знаки результирующих касательных напряжений соответствуют правилу, принятому для теории изгиба стержней. В сечении в эффектом стеснения можно пренебречь. Тогда = аз = —4,8 МПа а = о = 4,8 МПа т,, = 1,3 + 0,62 = 1,92 МПа = 1,3 — 0,62 = 0,68 МПа.  [c.246]

Если депланация хотя бы одного из сечений скручиваемого некруглого стержня по каким-либо причинам стеснена например, по условиям его закрепления или нагружения), то кручение уже не будет свободным оно будет сопровождаться изменением длины продольных волокон и возникновением в поперечных сечениях нормальных напряжений. Касательные напряжения в этом случае в разных сечениях различны они складываются из касательных напряжений чистого кручения и добавочных, связанных с неравномерностью депланации по длине стержня. Такой вид кручения при стесненной (несвободной) депланации называется стесненным кручением.  [c.182]

Влияние касательных напряжений на напряженно-деформированное состояние тонкостенного стержня. При стесненном кручении в сечении тонкостенного стержня действуют касательные напряжения Тс и (рис. 8).  [c.189]

Определение неизвестных силовых факторов в общем случае требует решения системы канонических уравнений и представляет трудоемкую задачу. Лонжероны и поперечины в конструктивном отношении представляют тонкостенные профили. Расчет, таких профилей на кручение имеет существенные особенности. Поперечные сечения стержней при кручении искривляются и становятся неплоскими, происходит так называемая депланация.- Соединения поперечин с лонжеронами препятствуют их депланации. В результате при кручении тонкостенных стержней кроме касательных напряжений возникают нормальные напряжения стесненного кручения, которые необходимо учитывать. Поэтому расчет рам на кручение базируется на теории тонкостенных профилей [ХУП.2,6].  [c.496]

Для тонкостенных стержней в основном остаются справедливыми формулы при растяжении, кручении, изгибе, ранее используемые для стержней сплошного сечения. Но, как правило, в тонкостенных стержнях поперечные сечения не остаются плоскими, происходит депланация сечений. Особенно заметная депланация происходит в стержнях с открытым профилем. Если по условиям закрепления или нагружения стержня возникают препятствия депланациям сечений, то при кручении таких стержней, которое обычно называют стесненным или неравномерным, появляются существенные нормальные напряжения, а при изгибе—дополнительные касательные напряжения, которые необходимо учитывать при расчетах на прочность.  [c.235]

Если точки поперечного сечения могут свободно перемещаться в направлении оси кручения, то кручение называется свободным, в противном случае оно называется стесненным. При свободном кручении в поперечных сечениях стержня возникают только касательные силы упругости, а следовательно, только касательные напряжения.  [c.89]

В главах XI и XII деформация тонкостенных стержней уже обсуждалась. В главе XI рассматривалось свободное кручение тонкостенных стержней открытого и замкнутого профиля и в главе XII — определение касательных напряжений в тонкостенных стержнях при поперечном изгибе и определение координат центра изгиба в поперечном сечении тонкостенного стержня открытого профиля. Ниже излагается теория стесненной деформации тонкостенных стержней открытого профиля.  [c.382]


В работе [18] учитывается влияние сдвига при изгибе пластинок, что может заметно повлиять на частоту колебаний только при относительной толщине диска (Ri > 0,2) или при большем числе узловых диаметров (т > 6). Модели стержня усложняются из-за более полного учета естественной закрутки [78, 79], стесненного кручения, касательных напряжений кручения и изгиба [18].  [c.277]

Если плоскость действия сил, к которым сводится нагрузка на балку, не проходит через линию, соединяющую центры изгиба сечений, то балка подвергается не только изгибу, но и кручению парами сил, моменты которых, вообще говоря, меняются по ее длине. Вследствие этого в сечениях балки появляются дополнительные касательные напряжения. С другой стороны, как известно, кручение стержней любого сечения, кроме круглого, сопровождается искривлением сечений. Ввиду переменности крутящего момента по длине балки, а также ввиду препятствий искривлению концевых сечений при их заделке, искривления различных сечений оказываются различными. Мы встречаемся с неравномерным или стесненным кручением, называемым так в отличие от равномерного или свободного кручения, при котором крутящие моменты постоянны по длине стержня и поперечные сечения могут свободно искривляться.  [c.293]

Обратимся теперь к вопросу о вторичных касательных напряжениях при стесненном кручении. Эти напряжения возникают вследствие переменности нормальных напряжений 0 по длине стержня. Для определения касательных напряжений стесненного кручения напишем уравнение равновесия части стержня, выделенной двумя поперечными сечениями, отстоящими на с1г одно от другого, и продольным сечением СО, взятым на некотором конечном расстоянии от края (см. рис. 1.25, грань АВ совпадает с краем).  [c.36]

В. п. 2 настоящего параграфа мы установили, что в любом сечении тонкостенного стержня, находящегося в условиях стесненного кручения, возникают секториальные касательные напряжения и касательные напряжения при чистом кручении т р. Первые из них для всего сечения стержня приводятся к моменту, который мы  [c.65]

В П. 2 7 мы установили, что в каждом сечении тонкостенного стержня при стесненном кручении возникают два рода касательных напряжений секториальные касательные напряжения и касательные напряжения при чистом кручении, которые в дальнейшем будем обозначать через  [c.178]

При исследовании кручения значения нормальных напряжений Ov = Ог могут оказаться весьма существенными. Кручение называется свободным, если роль нормальных напряжений в общей деформации бруса мала в сравнении с ролью касательных напряжений. В противном случае кручение называется стесненным. Стесненность кручения связана со стеснением депланацин поперечных сечений. Например, полый круглый стержень (тонкостенный стержень замкнутого профиля) испытывает свободное кручение без депланации поперечных сечений, как показано на рис. 13.3, а. Этот же стержень, будучи разрезанным вдоль одной из образующих открытый профиль), под действием тех же моментов закручивается с расхождением краев разреза в направлении оси, что приводит к депланации поперечных сечений. В этом случае значения малы и кручение остается свободным, при котором продольные (параллельные оси стержня) волокна не изменяют своей длины (рис. 13.3, б). Однако, если у того же разрезанного вдоль образующей стержня-трубки закреплен один на концов, а к другому приложен крутящий момент, характер напряженно-деформированного  [c.292]

Секториальные касательные напряжения т , возникающие в поперечных сечениях тонкостенного стержня при стесненном кручении, можно определить из уравнения равновесия бесконечно малого элемента стержня abed (рис. 14.8, а, б) аналогично тому, как это было сделано при выводе формулы Д. И. Журавского (7.32) для касательных напряжений при изгибе балки.  [c.301]

В стержнях открытого профиля предполагалось, что при стесненном кручении депла-нация происходит по тому же закону, что и при свободном кручении, при этом деформации сдвига в срединной поверхности равны нулю. В замкнутом сечении касательные напряжения которые приняты равномерно  [c.42]

Расчет тонкостенного стержня на растяжение (сжатие), изгиб и свободное кручение делается по правилам, изложенным в гл. 11, причем нормальные напряжения зависят только от усилий Ы, Мх, Му, а касательные только от (3 , Qy, Уточненный расчет тонкостенных брусьев с депланирующим профилем требует учета стесненности кручения и дополнительных нормальных и касательных напряжений стесненного кручения. При этом крутящий момент свободного кручения соответствующим образом уменьшается.  [c.174]

В стержнях открытого профиля предполагалось, что при стесненном кручении депланация происходит по тому же закону, что и при свободном кручении. При этом деформациями сдвига от напряжений т , в срединной поверхности пренебрегали. В случае замкнутого сечения. касательные напряжевня т , в отнршении которых по-прежнему принято, что они равномерно распределены по толщине стенки 6, существенно влияют на депланацию сечения за счет вызываемых ими сдвигов. С учетом этнх сдвигов можно получить выражение для депланации w, аналогичное (12.4), выведенное для стержней открытого профиля  [c.336]


Таким образом, есть момент касательных усилий стесненного кручения, т. е. та доля общего крутящего момента, которая создается напряжениям i в срединной поверхности T g. Величи на называется изгибно-крутящим моментом. При чистом кручении стержня касательные напряжения так что = 0.  [c.69]

При стесненном кручении, наряду с касательными напряжениями кручения, в сечениях стержней вследствие деплантации появляются допол-нительные нормальные напряжения. Крепление поперечин к стенкам лонжеронов более эластично и напряженное состояние здесь ближе к свободному кручению дсплантация сечений по длине стержня одинакова и дополнительных нормальных напряжений не возникает.  [c.335]


Смотреть страницы где упоминается термин Стержнн Напряжения касательные при кручении стесненном : [c.325]    [c.361]    [c.28]    [c.307]    [c.36]    [c.50]   
Прочность, устойчивость, колебания Том 1 (1966) -- [ c.420 , c.426 ]



ПОИСК



I касательная

Кручение стесненное

Напряжение в кручении

Напряжение касательное

Напряжения Напряжения касательные



© 2025 Mash-xxl.info Реклама на сайте