Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

342 — плоские 25, 39 — постоянного

Рычаги рабочего и быстрого ходов получают движение от плоских постоянных кулачков, профиль которых может быть изменен. Кулачки крепятся на дисках поперечной части распределительного вала.  [c.359]

Оба силовых контакта изготовлены из меди и закрыты дугогасительной камерой, для крепления которой к кронштейну 15 двумя болтами М5 привернут текстолитовый кубик 12. Камера собрана из двух асбоцементных стенок 29, двух торцовых асбоцементных вкладышей 26, двух стальных листов 30, двух алюминиевых кожухов 31 и шести соединительных болтов М5. Задний вкладыш 26 выполнен меньшим по высоте, так как нижний соединительный болт проходит через отверстие в текстолитовом кубике. Между стенками 29 и листами 30 поставлены плоские постоянные магниты 28, обеспечивающие гашение дуги, а в местах прохода соединительных болтов — текстолитовые вкладыши 27. Дополнительное крепление дугогасительной камеры обеспечивается с помощью плоской пружины 7 (концы  [c.229]


Примером пары IV класса в плоских кинематических цепях может служить пара, образованная звеньями Л и S, выполненными в виде двух цилиндрических поверхностей и р с параллельными осями (рис. 2.8), перекатывающихся со скольжением друг по другу и постоянно соприкасающихся по прямолинейным образую-  [c.41]

Эллипс - замкнутая плоская выпуклая кривая, сумма расстояний каждой точки которой до двух данных точек (фокусов), лежащих на его большой оси, есть величина постоянная и равная длине большой оси.  [c.43]

Гипербола - плоская кривая, состоящая из двух разомкнутых, симметрично расположенных ветвей (рис. 78, й). Разность расстояний от каждой точки гиперболы до фокусов F и F, есть величина постоянная и равная расстоянию между вершинами гиперболы А и В.  [c.45]

Спираль Архимеда — плоская кривая линия, которая образуется при равномерном движении точки по радиусу-вектору, вращающемуся с постоянной угловой скоростью вокруг неподвижной точки (полюса).  [c.160]

Гипербола — плоская незамкнутая кривая, разность расстояний от каждой точки которой до двух определенных точек — фокусов f и f 1 — есть величина постоянная и равная расстоянию между точками А н (рис. 15) — вершинами гиперболы.  [c.25]

Кроме рассмотренных разделительных операций, в технологии листовой штамповки применяют и другие, такие, как надрезка (частичное отделение части заготовки по незамкнутому контуру, причем разделяемые части не теряют связи между собой) и обрезка (отделение краевой части полого изделия для обеспечения заданной, постоянной по периметру высоты детали или отделение краевой части плоского фланца для получения заданной формы и размеров).  [c.105]

Первый член правой части этого уравнения характеризует изменение первоначального профиля скорости однородной решеткой (плоской с постоянным по сечению коэффициентом сопротивления), установленной нормально к потоку (tg 0 = 0), второй — влияние изменения коэффициента сопротивления решетки вдоль ее поверхности, а третий — влияние наклона решетки (величины tg 0). Это уравнение дает линейную связь между распределением скоростей соответственно перед решеткой ш—сс и за ней и ее тремя характеристиками коэффициентом сопротивления р, коэффициентом преломления В и углом наклона 0.  [c.127]

Уголковая решетка. Простым и удобным распределительным устройством, особенно для электрофильтров и скрубберов, в которых происходит осаждение пыли, является щелевая решетка, составленная из уголков, установленных вершинами кверху. С таких уголков пыль легко стряхивается, а при достаточной вытянутости вершин (большой угол откоса — 60° и более) пыль, если она не липкая, вообще не удерживается. Такая решетка удобна еще и тем, что уголки легко укладывать с переменным шагом для обеспечения лучшего распределения скоростей и меньшего коэффициента сопротивления, чем при постоянном шаге. Уголковую решетку можно применять как при боковом вводе потока, так и при центральном. В случае бокового ввода потока уголки располагают перпендикулярно к оси входа (рис. 8.3, а). При центральном набегании потока на решетку уголки следует располагать в двух взаимно перпендикулярных направлениях. Уголковая решетка, как и плоская, при очень большом коэффициенте сопротивления вызывает перевертывание профиля скорости в сечениях на конечном расстоянии за решеткой. Для устранения этого эффекта следует к вершинам уголков приварить направляющие пластинки.  [c.204]


Кольцо постоянной ширины с одинаковыми щелями по периметру с плоской решеткой (Ср " = 30) и спрямляющей  [c.213]

Отражательное устройство (рнс. 10.34, ж и з) состоит из плоских колец, установленных в случае цилиндра-стакана с наружной стороны, а в случае спаренного канала — с внутренней стороны пористой перегородки. Кольца имеют постоянную ширину Ь. Этот вариант может быть применен только при достаточно малом значении Л , когда теоретически должно быть обеспечено равномерное распределение радиальных скоростей по величине. Кольца также можно крепить на поперечных ребрах /, так что устройство легко надевают снаружи пористой перегородки.  [c.305]

Полученные уравнения применимы как для круглой, так и для плоско-параллельной струй. При этом значения Ki определяются по уравнениям (11.50) и (11.51). Соотношения, аналогичные (11.92)—(11.97), можно получить и в случае размещения в аппарате устройств, отличных но форме от пластин. Приведенные зависимости выведены в предположении, что теплотой, отдаваемой телам, которые встречаются на пути струи, можно пренебречь, или в предположении, что эти тела отсутствуют. Если на пути струи имеются тела и воспринимаемой ими теплотой пренебречь нельзя, то это обстоятельство следует учесть во всех выводах. Получаемые при этом уравнения будут отличаться от представленных только постоянным коэффициентом при множителе ехр (—Кът ) (коэффициент Кз имеет более сложное выражение).  [c.336]

Как указывалось выше, общие ОН обусловлены общей остаточной деформацией всей зоны перфорации, осредненной по толщине коллектора. Расчет общих ОН представляет собой решение плоской упругопластической задачи, единственным возмущающим фактором в которой являются постоянные начальные деформации 8 , равные осредненным остаточным пластическим деформациям. Очевидно, что перфорированная зона в плоской задаче имеет большую податливость (при рассмотрении этой зоны в континуальной постановке), чем основной металл. Поэтому при решении задачи по анализу общих ОН принимается, что металл зоны перфорации имеет модуль упругости, равный  [c.336]

Для обыкновенных плоских ремней рекомендуется начальное напряжение в ремне сто=1,6 МПа — при вертикальном или близком к нему расположении передачи, небольшом межосевом расстоянии и постоянной длине ремня ао= 1,8 МПа — при угле наклона передачи к горизонту не более 60° и при периодическом регулировании межосевого расстояния сто = 2,0 Д Па — для самонатяжных передач с постоянным натяжением оо = 2,4 МПа —для самонатяжных передач с переменным натяжением.  [c.43]

Задача IV—2. Призматический сосуд длиной 3/ = 3 м и шириной с = 1 м, перемещающийся горизонтально с постоянным ускорением а — 0,4 , разделен плоской перегородкой на два отсека, заполненных водой до высот = — 1 м и 2 = 1,75 м.  [c.87]

Линейка эллипсографа приводится в движение кривошипом ОС, вращающимся с постоянной угловой скоростью шо вокруг оси О. Приняв ползун В за полюс, написать уравнения плоского движения линейки эллипсографа, если ОС = ВС = ЛС = г. В начальный момент линейка ЛВ была расположена горизонтально.  [c.115]

По какой плоской кривой следует изогнуть трубку, чтобы помещенный в нее в любом месте шарик оставался по отношению к трубке в равновесии, если трубка вращается с постоянной угловой скоростью со вокруг оси Оу  [c.232]

Материальная точка массы т подвешена с помощью стержня длины / к плоскому шарниру, горизонтальная ось которого вращается вокруг вертикали с постоянной угловой скоростью (U (см. рисунок к задаче 49.4). Составить функцию Гамильтона и канонические уравнения движения. Массу стержня не учитывать.  [c.374]

Для поворота корпуса космического аппарата используется электродвигатель-маховик, уравнение движения которого на вращающемся аппарате имеет вид со + со/Г = и, где со — относительная угловая скорость маховика, Т — его постоянная времени, и — управляющее напряжение, принимающее значения Но. Определить длительность t разгона и — По) и торможения 2(и = —По) маховика, если первоначально невращающийся корпус при неподвижном маховике требуется повернуть на заданный угол ф и остановить. Ось вращения маховика проходит через центр масс космического аппарата движение считать плоским. Моменты инерции маховика и аппарата относительно общей оси вращения соответственно равны I и /о.  [c.397]

Рассмотрим наиболее распространенный случай — теплопроводность через однослойную плоскую стенку, длина и ширина которой бесконечно велики по сравнению с толщиной б (рис. 23-1). Стенка имеет во всех своих частях одинаковую толщину, причем температуры поверхностей ( ст и /ст поддерживаются постоянными, т. е. являются изотермическими поверхностями. Температура меняется только в направлении, перпендикулярном к плоскости стенки, которое принимаем за ось X. Коэффициент теплопроводности X постоянен Для всей стенки. При стационарном тепловом режиме температура в любой точке тела неизменна и не зависит от времени, т. е. = 0. Тогда дифференциальное уравнение теплопроводности после сокращения коэффициента температуропроводности принимает вид  [c.358]

При постоянном коэффициенте теплопроводности это уравнение прямой линии. Следовательно, закон изменения температуры при прохождении теплоты через плоскую стенку будет линейным. Найдем постоянные интегрирования А п В.  [c.359]


Матрица имеет небольшие габариты и вес, конструкция ее удобна для хранения и транспортирования, технологична. Магнитное поле матрицы образуется набором плоских постоянных магнитов (например, типа УВ-Э1 по Н0.707 003, размерами 30X8X4,2 мм) или полосками магнитной резины (4X8 мм) по ТУ 39-5-357—68. Для снижения веса матрицы основание ее делают двухслойным, состоящим из стального и алюминиевого листов с вырезами (ручками) по краям для транспортирОв1ки.  [c.39]

Как известно из теоретической механики, при вращательном плоском движении звена около некоторой точки ускорения всех точек звена пропорциональны радиусам-векторам, соединяюи нм исследуемые точки с центром вращения, а направления этих ускорении образуют с этими радиусами-векторами постоянный угол i, определяемый из уравнения  [c.85]

Анализируя равенства (13.35), приходим к выводу, что для уравновешивания главного вектора сил инерции звеньев плоского мехагшзма необходимо и достаточно так подобрать массы этого механизма, чтобы общий центр масс всех звеньев механизма оставался неподвижным. Для уравновешивания главных моментов относительно осей хну необходимо и достаточно подобрать массы механизма так, чтобы центробежные моменты инерции масс всех звеньев механизма относительно плоскостей хг и yz были постоянными.  [c.279]

Конечно, во многих случаях вибрационные машины явля ются более сложными, чем показано в этом параграфе упругая сила подвески и демпфирующая сила — нелинейные, скорость вращения дебалансов не принимается постоянной, а учитывается характеристика двигателя, и подвеска часто обеспечивает движение массы не только прямолинейное, но и плоское или пространственное в некоторых случаях приходится учитывать присоединяемую к М массу обрабатываемого продукта.  [c.303]

Рис. 171. Чертеж отводных каналов а - кольцевой, плоской К 1)ивои осью, поперечные сечения - окружности постоянной ялошлли, 6 - коленный, с плоской ломаной осью, составленный ит отрезков цилиндрических труб, fs - ритвертка коленног о канала Рис. 171. Чертеж отводных каналов а - кольцевой, плоской К 1)ивои осью, поперечные сечения - окружности постоянной ялошлли, 6 - коленный, с плоской ломаной осью, составленный ит отрезков цилиндрических труб, fs - ритвертка коленног о канала
Защитная гидромуфта постоянного наполнения с плоскими наклонными лопастями позволяет получить б = 2 -ь 3. В ней (рис. 2.85, д) использован второй способ модификации характеристик, для чего лопасти насосного колеса отклоне] М по ирашепию назад, а турбинного — вие-ред. При отклонении лопастей назад па-пор, создаваемый насосным колесом падает, а сопротивление всей лопастной системы увеличивается. Это ведет к снижепню Q и М05гента при малых I. Прп больших г расход в гидромуфтах мал, и форма лопастей пе оказывает заметного влияния па гидравлические характеристики колес, а следовательно, и на форму падающей ветви характеристики. Характеристика гидромуфты с наклонными лопастями показана на рис. 2.86 (о).  [c.258]

Теоретическое решение задачи о выравнивающем действии сеток (плоских решеток) было дано Колларом в 19.39 г. [167]. Рассматривая одномерную задачу, он применил теорему импульсов к потоку с небольшой начальной неравномерностью распределения скоростей по сечению прямого канала, т. е. состоящему из двух трубок тока с разными начальными скоростями и проходящему через распределительную решетку (сетку) постоянного по всему фронту сопротивления (равномерного живого сечения). На основе этого им получена связь между отклонениями скоростей от среднего по сечению значения  [c.10]

Мак-Карти [198] исследовал трехмерный поток через проволочную решетку с произвольным распределением сопротивления в канале постоянного, но различной формы, сечения. Не вводя ограничения па величину изменения сопротивления решетки по сечению и на степень неравномерности поля скоростей, как это сделано во всех перечисленных работах, он вывел уравнения, позволяющие вычислить изменение сопротивления решетки, необходимое для получения заданного профиля скорости. Эти уравнения справедливы для случая плоской решетки произвольной кривизны, но только для равномерного исходного профиля скорости.  [c.11]

В диффузорах с углом расширения > 40° поток не может следовать даже по одной из сторон и отрывается одновременно по всему периметру сечения, образуя струйное течение. Отрыв становится более устойчивым, а профиль скорости более постоянным, чем при меньших углах расширения. Опыты показывают (см. рис. 1.21, б), что при углах расширения 1 > 24° отрыв потока начинается у входного сечения диффузора, даже при больших числах Не, когда отрыв турбулентный. Интересно отметить, что неравномерность распределения скоростей, а также отрыв потока в плоском диффузоре наблюдаются не только в плоскости ])асширения, но и в перпендикулярной к ней плоскости, = г /Ь (рис. 1.25). Под плоским диффузором подразумевается диффузор, который расширяется только в одной плоскости.  [c.31]

Протекание жидкости через перфорированную пластинку (плоскую решетку) в пространство, не ограниченное стенками. Если поток равномерно набегает на перфорированную пластинку перпендикулярно ее поверхности, то струйки, вытекающие из отверстий, имеют одинаковые скорости и направление. Непосредственно за плоской решеткой жидкость движется отдельными свободными струйками, которые постепенно размываются и только на определенном расстоянии за решеткой сливаются в общую струю с максимальной скоростью на оси центральной струйкн (рис. 1.49, а, б). Каждая струйка за решеткой интенсивно подсасывает окружающую ее жидкость. При этом соседние струйки мешают притоку жидкости, увеличивающей присоединенную массу. Поэтому вокруг каждой струйки образуется циркуляция внутренних присоединенных масс (рис. 1.49, в), так что масса струек от выходного сечения О—О (х — 0) до сечения I—/ (х/с1 т- 5-т-8), где происходит слияние практически всех струек, остается постоянной. Только крайние струйки в случае неограниченной струи могут непрерывно подсасывать жидкость из окружающей среды, передавая ей часть кинетической энергии [40, 41 1. Так как увеличение массы центральных струек за счет окружающей среды затруднено, они начинают подсасывать соседние струйки. В результате все струйкн отклоняются к оси (рис. 1.49, в), и площадь поперечного сечения / -/ общего потока с массой, равной сумме масс всех струек, получается меньше начальной площади (сечения О—О), т. е. площади решетки. Согласно опытам [34], в этом сечении отношение средней скорости к максимальной = г ср/и г 0,7 при / =--== 0,03- 0,40. После суженного сечения поток расширяется по обычным законам свободных струй (см. выше) с увеличением общей массы за счет присоединенной массы из окружающей среды (см. рис. 1.49, а, в). На основании рис. 1.49, а а б относительное расстояние х/1/ Ек от решетки до самого узкого поперечного сечения общей струи, после которого она начинает расширяться, можно принять равным 0,6—0,7.  [c.53]


Без указанных ограничений по величине изменения сопротив.тения решетки вдоль ее поверхности выведены уравнения [198], позволяюшне вычислить профиль скорости с умеренной степенью неравномерности, вызванной решеткой с произвольным сопротивлением по сечению при техмерном течении в канале произвольной формы, но постоянного гечепня. Этот метод расчета применим только для плоской решетки (0 -- 0) и первоначального равномерного профиля скорости по сечению = 1 . Как показывают  [c.136]

В некоторых опытах применяли решетки со спрямляющими устройствами (см. табл. 7.1) или с насыпными слоями кускового материала, а также систему последовательно установленных плоских (тонкостенных) решеток. Помимо моделей аииаратов круглого сечения, у которых основные параметры могли меняться в широких пределах, были исследованы так ке модели аппаратов прямоугольного сечения при постоянном отношении Fi-j Fb 9,5. По форме эти модели близки к модели входного участка вертикального электрофильтра типа ДВП.  [c.160]

Результаты, приведенные в табл. 9.3, свидетельствуют о том, что расширенное колено с лопатками может быть вполне заменено плавным отводом 4 постоянного сечения с двумя кошщнтрически расположенными лопатками (перегородками). Распределение скоростей остается в этом случае практически неизменным (Мк = 1,08). В то же время одна уголковая решетка (вместо двух перфорированных) в случае отвода заметно ухудшает поле скоростей (/Ик = 1,29), чем при колоне с лопатками. Однако дополнительная плоская решетка создает при этом наиболее равномерное распределение скоростей (/Ик 1,06).  [c.230]

В большинстве стандартных систем допуски размеров определяются на основе единицы допуска /, зависящей от номинального размера D. Для гладких цилиндрических соединений размером 1. .. 500 мм единица допуска, мкм i = 0,5 Yd (в общесоюзной системе ОСТ), i = 0,45 + 0,001D (в международной системе ISO), где D — среднее значение номинальных размеров, мм, для данного интервала, в пределах которого допуск принимают постоянным. Под номинальным размером понимают номинальный размер диаметра поверхности при определении допусков цилинд-ричности, круглости и профиля продольного сечения или размер наибольшей стороны плоской поверхности при определении допусков прямолинейности, плоскостности и параллельности поверхностей в зависимости от квалитета допуска размера. При составлении стандартизованных числовых значений допусков диапазона 1—500 мм отобрано 13 значений единиц допусков, равных ординатам средних геометрических значений интервалов до 3, 3—6, 6—10, 10—18, 18—30, 30—50, 50—80, 80—120,120—180,180—250, 250—315, 315—400, 400—500.  [c.75]

Наиболее простым является крепление стопорным пружи]тым плоским кольцом по ГОСТ 13942—68 (табл. 5.45). Оно применяется в случаях, когда па подшигтик не дейст ует постоянная осевая нагрузка п режим нагружения спокойный при средних радиальных нагрузках. В остальных случаях примен . ются резьбовые крепления с помощью винта и торцовой шайбы, п )ппнмаемые по табл. 5.46, или с помощью круглой шлицевой гайк со стопорной многолапча-той шайбой (см. рис. 5.14, 5.16, 5.17, 5.30, 5.32), которые выбираются по табл. 5.47...5.49.  [c.128]

Определение твердости по Бринеллю. Метод основан на том, что в плоскую поверхность металла под постоянной нагрузкой Р (Н) вдавливается 1вердьп 1 стальной шарик (рис. 43, а). После снятия нагрузки в испытуемом металле образуется отиечагок (лунка).  [c.66]

Материальная точка М соединена с помощью стержня ОМ длины I с плоским шарниром О, горизонтальная ось которого вращается вокруг вертикали с постоянной угловой скоростью (0. Определить условие устойчивости нижнего вертикального положения маятника, период его малых колебаний при выведении его из этого положения и обобщенный интеграл энергшг. Массой стержня пренебречь.  [c.373]


Смотреть страницы где упоминается термин 342 — плоские 25, 39 — постоянного : [c.196]    [c.236]    [c.280]    [c.231]    [c.91]    [c.43]    [c.374]    [c.2]    [c.305]    [c.313]    [c.87]    [c.44]   
Теория звука Т.2 (1955) -- [ c.0 ]



ПОИСК



342 — плоские 25, 39 — постоянного бегущей воде

342 — плоские 25, 39 — постоянного типы 40 — растяжения

479—483 соотношение между изгибающим ючентом и кривизной, 483 485 теория толстых толстой —, 489, 490 обобщенное плоское напряженное состояние в толстой —, 491 случай постоянного

X2Y4, молекулы, плоские, симметричные вычисление частот нормальных колебаний и силовые постоянные (потенциальные постоянные)

XYS, молекулы, плоские (см. также Симметричные волчки) колебаний и силовые постоянны

Гидромуфты постоянного заполнения защитные с плоскими наклонными лопатками

Гидромуфты постоянного заполнения защитные с плоскими наклонными с самоопоражниванием

Истечение жидкости из отверстия в тонкой плоской стенке при постоянном напоре

Истечение жидкости через большие отверстия в тонкой плоской стенке при постоянном напоре

Истечение жидкости через малые отверстия в тонкой плоской стенке при постоянном напоре

Людерса (Luders) постоянная плоской теории упругости

Математика: значения постоянных соотношения элементов плоских

Молекулы типа XYa. Пирамидальные молекулы типа XY3. Линейные молекулы типа X2Y2. Тетраэдрические молекулы типа XY4. Плоские молекулы типа Х2У, (метод Сезерланда и Деннисона). Другие молекулы, Сравнение силовых постоянных различных молекул, характеристические частоты, валентные и деформационные колебания и другие родственные проблемы

НАПРЯЖЕННАЯ ПОСАДКА В СЛУЧАЕ ПЛОСКОЙ ЗАДАЧИ И ВДАВЛИВАНИЕ ШТАМПА В МНОГОСВЯЗНУЮ ПОЛУПЛОСКОСТЬ Напряженная посадка сред, имеющих одинаковые упругие постоянные

Опоры постоянные с плоской н сферической

Опоры постоянные с плоской н сферической головкой

Опоры постоянные стандартизованны установки заготовок плоскими поверхностями

ПЛАСТМАСС плоские постоянной толщины - Напряжения

Плоская деформация трубок постоянного поперечного сечения

Плоские волны сжатия, распространяющиеся в жидкости с постоянной сдвиговой и объемной вязкостями

Плоское движение газа при постоянной энтропии 3- 1. Потенциальное движение жидкости

Ползучесть полимеров в условиях плоского напряженного состояния при постоянных нагрузках

Растяжение пластинки. Упругие постоянные при плоском напряженном состоянии

Решения автомодельной задачи о движении плоского поршня с постоянной скоростью

Силовые постоянные 159 (глава плоских молекул

Теплообмен в плоской трубе при постоянной и одинаковой на обеих стенках плотности теплового потока

Теплообмен в плоской трубе при постоянной температуре окружающей среды

Теплообмен в плоской трубе при постоянной температуре стенки

Теплообмен в плоской трубе при постоянной, но различной на каждой из етенок плотности теплового потока

Теплообмен в плоской трубе, одна стенка которой теплоизолирована, а со стороны другой температура окружающей среды постоянна

Теплообмен в плоской трубе, одна стенка которой теплоизолирована, а температура другой постоянна

Теплообмен в термическом начальном участке круглой и плоской труб при постоянной температуре стенки (приближенное решение)

Теплопередача через плоскую стенку при постоянных температурах жидкостей

Цилиндры Деформация плоская при постоянном по длине давлении



© 2025 Mash-xxl.info Реклама на сайте