Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон Сетха

Сетх рассмотрел большое число нелинейных задач, осно-вываясь на законе состояния  [c.659]

Казалось бы, что очевидной и простейшей попыткой описать поведение материала при больших деформациях может служить поедложенная Сетхом ( eth, 1935) замена в законе Гука линейной теории линейного тензора деформации е тензором конечной. деформации, например, тензором (1.7.8) Альманзи А или соответствующей ему мерой g  [c.151]

Условия интегрируемости (4.3.6) не выполняются, квазилинейный закон (1) непригоден для описания поведения гиперупругого тела. Однако, как показал Сетх, он позволяет учесть некоторые особенности нелинейной теории, например, конечность силы, создающей разрыв образца (бесконечное возрастание одного из главных удлинений), необходимость приложения нормальных усилий для осуществления деформации простого сдвига. При малых градиентах вектора перемещения количественные результаты не могут значительно отличаться от предсказаний линейной теории, но квазилинейный закон не налагает ограничений на перемещения и повороты, поэтому допускает рассмотрение недоступных линейной теории явлений.  [c.151]


Не приводит к цели предложешшя Сетхом замена в законе Гука линейного тензора деформации тензором конечной деформации— условия с -щество-р.ания удельной потенциальной энергии оказывается невыполненными.  [c.499]


Смотреть страницы где упоминается термин Закон Сетха : [c.509]   
Нелинейная теория упругости (1980) -- [ c.151 ]



ПОИСК



Закон Сетха упрощенный квазилинейный

Закон Сетха энергии

Сетха



© 2025 Mash-xxl.info Реклама на сайте