Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивые состояния равновеси

Ответ При 2(т + m )g> с а — /о) одно устойчивое состояние равновесия [c.399]

УСТОЙЧИВОСТЬ состояния РАВНОВЕСИЯ (ПОКОЯ) КОНСЕРВАТИВНОЙ МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.301]

На рис. 2.2 видно, что в устойчивых состояниях равновесия производная f (Xk) <0, а в неустойчивых состояниях Г > О- Значение f (л ) = О может быть как в точках устойчивого, так и неустойчивого состояния равновесия (см., например, точки х = Х2, х = на рис. 2.2). Поскольку характер движения в системе первого порядка полностью определяется видом функции / (х), представляет интерес рассмотреть случай, когда эта функция зависит от некоторого параметра X, и изучить влияние параметра X на характер фазового портрета рассматриваемой системы. Для этого,  [c.22]


Устойчивость состояний равновесия легко определить по бифуркационной диаграмме, которая получается из рис. 2.3 путем несложного дополнения. Заметив, что кривая / (х, к) = О разделяет плоскость хк на две области f х, Х)> О и f х, X) < О, заштрихуем область, в которой f х, к) > 0. Тогда, согласно смыслу производной f x (х, к), если точка, соответствующая состоянию равновесия х —  [c.22]

Xk, лежит на кривой / (х, >.) == О справа от заштрихованной области, то fx Xh, t) < О, а если слева, то f x (х , к) > 0. В результате получаем бифуркационную диаграмму (рис. 2.4), на которой точками отмечены участки кривой / (х, X) = О, соответствующие устойчивым состояниям равновесия, а крестиками — неустойчивым состояниям равновесия.  [c.23]

О С Я, < 1/4 система обладает двумя со- Рис. 2.14. стояниями равновесия устойчивым и не-, устойчивым, а при Я, < О (знак X изменяется при изменении направления одного из токов) — одним устойчивым состоянием равновесия. В точке Q-U, /4) производная ( , Я) == О, поэтому X == V4 есть бифуркационное значение параметра. Для построения фазового портрета рассматриваемой системы напишем интеграл энергии. В безразмерных величинах интеграл энергии имеет вид  [c.35]

Таким образом, при любых значениях физических параметров в области ё > О рассматриваемая система обладает единственным глобально устойчивым состоянием равновесия какие бы начальные условия мы не задавали, система совершает затухающие (периодические или апериодические) движения.  [c.39]

Оказывается, что для выяснения качественной картины для системы второго порядка нужно знать поведение не всех траекторий, а лишь некоторых из них, называемых особыми траекториями. К последним относятся состояния равновесия, предельные циклы и незамкнутые траектории, у которых хотя бы одна полутраектория (т. е. кривая, описываемая изображающей точкой при t +00 или при — XD из начального положения точки в момент времени t = о) является сепаратрисой какого-нибудь состояния равновесия. Если взаимное расположение этих особых траекторий известно и, кроме того, определена устойчивость состояний равновесия и предельных циклов, то мы получаем полную качественную картину разбиения плоскости ху на траектории.  [c.42]

Итак, в случае а О все фазовые траектории асимптотически приближаются к устойчивому состоянию равновесия, а фазовый портрет системы имеет вид, показанный на рис. 3.17. Таким образом, при наличии сил сопротивления воздуха планер при любых начальных условиях приходит к единственному устойчивому равновесному режиму. Если начальная скорость планера достаточно велика, то планер совершит сначала одну или несколько мертвых нетель, затем ио волнообразно затухающей траектории будет приближаться к траектории прямолинейного полета. Одна из возможных траекторий полета планера показана на рис. 3.18.  [c.66]

На фазовой плоскости q при а< 0 будет устойчивое состояние равновесия в начале координат и, следовательно, система совершает затухающие колебания. При  [c.130]

При у<а<0 состояний равновесия три устойчивое состояние равновесия р = О, неустойчивое состояние равновесия, соответствующее нижней ветви параболы (5.22), и устойчивое состояние равновесия, соответствующее верхней части параболы (5.22). На фазовой плоскости q это  [c.131]


И при a = Q — автоколебания прекратятся (при конечной амплитуде), а система придет к устойчивому состоянию равновесия.  [c.132]

Рассмотрим плоскость р. На этой плоскости кривая <7=0 определяет область неустойчивых состояний равновесия (седел). При q> О линия р = О отделяет устойчивые состояния равновесия от неустойчивых. Граница между фокусами и узлами определяется уравнением 6 = 0, т. е.  [c.138]

Напомним, что устойчивость состояния равновесия х = = Хо, у = Уо, Z = системы уравнений  [c.187]

Устойчивой особой точке 0 ° соответствует установившееся движение динамической системы, называемое устойчивым состоянием равновесия. Область притяжения устойчивого состояния равновесия состоит из всех переходных движений, которые имеют своим предельным движением это равновесное состояние или, проще, которые в него переходят. В некотором смысле сказанным полностью решается вопрос о состояниях равновесия и их устойчивости в большом, поскольку состояния равновесия находятся из уравнения  [c.245]

Устойчивые состояния равновесия отбираются требованием, чтобы все корни так называемого характеристического уравнения имели отрицательные действительные части, а формула (7.2) в принципе позволяет найти область притяжения с любой степенью точности, поскольку области б (t) при убывании i ее исчерпывают.  [c.245]

Особый интерес представляют бифуркации устойчивого состояния равновесия. С устойчивым состоянием равновесия возможны следующие различные бифуркации  [c.256]

При первой бифуркации устойчивое состояние равновесия сливается с седловым О и они оба исчезают, превращаясь в обыкновенную точку.  [c.256]

Как и всегда, особый интерес представляет случай бифуркаций с участием устойчивых состояний равновесия и периодических движений. В этом случае р = п — 1. Далее, как  [c.265]

Таким образом, с участием устойчивых состояний равновесия или периодических движений возможна только одна  [c.266]

Выше были описаны локальная структура и локальные бифуркации состояний равновесия и периодических движений. Наибольший непосредственный интерес среди них представляют устойчивые состояния равновесия и устойчивые периодические движения. Только они могут быть установившимися движениями динамической системы, ее состояниями равновесия и периодическими движениями. Каждое устойчивое состояние равновесия и устойчивое периодическое движение имеет свою область притяжения. Возможен случай, когда эти области притяжения почти целиком заполняют все фазовое пространство. Под словами почти целиком имеется в виду, что вне этих областей могут быть лишь точки, не образующие областей, с общей нулевой мерой, например отдельные точки, линии или поверхности размерности, меньшей, чем размерность пространства. Для двумерных систем именно такова структура фазового пространства в общем случае. Для многомерных систем это не так. Однако было бы естественным выделить из них подкласс динамических систем с такой структурой — класс динамических систем, установившимися движениями которого могут быть только устойчивые состояния равновесия и устойчивые периодические движения и почти все остальные движения являются асимптотическими по отношению к одному из них. Оговорка почти не имеет прямого смысла, поскольку в такой динамической системе нет реализуемых движений, отличных от устойчивых состояний равновесия и периодических движений и асимптотически приближающихся к ним. Она имеет чисто математический смысл, который, однако, имеет совсем другое, очень важное отношение к реальному поведению динамической системы. Эти исключительные и нереализуемые движения отделяют друг от друга движения, приближающиеся к различным установившимся движениям. В этом и состоит их  [c.268]

Поясним сказанное простыми примерами. В простейшем случае имеется одно установившееся движение, устойчивое состояние равновесия или периодическое движение, а все остальные движения к нему приближаются. В этом случае говорят о глобальной устойчивости этих установившихся движений. В последнее время в рамках так называемой абсолютной устойчивости получены практически важные достаточные критерии глобальной устойчивости состояния  [c.269]

В теореме Лагранжа — Дирихле дается строгое дока-аательетво того, что для любой материальной системы (в консервативном силавом поле) минимум потенциальной энергии является признаком устойчивого состояния равновесия. Приведем формулировку теоремы Лагранжа Дирихле если для материальной системы, находя- щейся в консервативном силовом поле и подчиненной голономным идеальным стационарным связям, потенциальная энергия в положении равновесия системы имеет минимум, то это положение равновесия устойчиво ).  [c.42]

Таким образом, на плоскости иу фазовыми траекториями служит семейство логарифмических спиралей с асимптотической точкой в начале координат. На плоскости ху фазовые траектории также представляют собою спирали, скручивающиеся к началу кЬординат (рис. 2.18). Двигаясь по любой из этих фазовых траекторий, изображающая точка асимптотически (при t-> +00) приближается к началу координат, где находится особая точка — устойчивий фокус. Точка X = О, у = Q представляет собою отдельную фазовую траекторию, соответствующую асимптотически устойчивому состоянию равновесия осциллятора.  [c.39]


С текущим параметром Уравнения (3.12) определяют на плоскости другую граничную кривую. Часть этой кривой, показанной на рис. 3.8, является границей устойчивости особых точек неседлового типа. Картина разбиения плоскости параметров г/о,х на области, различающиеся числом и устойчивостью состояний равновесия системы, показана на рис. 3.8, где кривая (3.10) показана сплошной жирной линией, а кривая (3.11) — сплошной тонкой линией. Область 1 соответствует наличню одной устойчивой особой точки на фазовой плоскости область 2 — одной неустойчивой особой точки типа узла или фокуса области 3 — 6 — трем особым точкам, из которых в области 3 две устойчивы, а третья — седло. В областях 4 и 6 неустойчивы две особые точки, а в области 5 неустойчивы все три особые точки.  [c.57]

I — главный центральный момент инерции, h — коэффициент вязкого трения, М — момент внешних сил. Пусть М = М (t 3) является известной функцией угла -ф поворота руля. При М = О установившийся угол ф зависит от начальных условий и может принимать согласно (4.46) любое значение ф = onst, т. е. при М = О судно обладает многообразием равновесных состояний. Создание одного устойчивого состояния равновесия, соответствуюш,его заданному курсу ф = О, возможно лишь посредством перемещения руля. Одной из простейших систем автоматической стабилизации курса является двухпозиционный авторулевой, при котором руль может находиться лишь в двух положениях -ф = создавая в каждом из них равные, но противоположно направленные моменты сил М = М . При этом положение руля за-ВИСИТ ОТ СОСТОЯНИЯ судна, т. е. является  [c.105]

Если р соответствует устойчивому состоянию равновесия, то на плоскости qq — устойчивый предельный цикл все соседние интеЕральные кривые — спирали, накручивающиеся на этот предельный цикл. Если же р/, соответствует неустойчивому состоянию равновесия, то на плоскости qq — неустойчивый предельный цикл.  [c.126]

В первом и последнем случаях происходит исчез1юне-ние устойчивого установившегося движения, во втором случае такое исчезновение не имеет места, поскольку при этом устойчивое состояние равуювесия непрерывно преобразуется в устойчивое же периодическое движение. Отметим, что при этом область притяжения устойчивого состояния равновесия непрерывно переходит в область притяжения устойчивого периодического движения. Сказанное поясняется рис. 7.8.  [c.256]


Смотреть страницы где упоминается термин Устойчивые состояния равновеси : [c.41]    [c.44]    [c.45]    [c.45]    [c.47]    [c.13]    [c.22]    [c.25]    [c.35]    [c.130]    [c.131]    [c.141]    [c.149]    [c.150]    [c.165]    [c.165]    [c.228]    [c.238]    [c.250]    [c.252]    [c.269]   
Качественная теория динамических систем второго порядка (0) -- [ c.169 ]



ПОИСК



Состояние устойчивое



© 2025 Mash-xxl.info Реклама на сайте