Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

654 - Группы 646,649,653,655 - Влияние свойства 646, 650, 654 - Химический

Механизм развития горячей коррозии зависит, в первую очередь, от особенностей химического взаимодействия между расплавом осажденной соли и данным сплавом. В частности, именно присутствие соли является причиной появления на поверхности сплава продуктов такого взаимодействия, не обладающих защитными свойствами. Химические реакции могут быть вызваны изменением растворимости одних фаз в областях стабильности оксидов или образованием других фаз вне этих областей. При обсуждении возможных механизмов развития горячей коррозии удобно разделить их на две группы. В первую можно включить все механизмы, имеющие ту общую особенность, что образование продуктов химических реакций, не обладающих защитными свойствами, происходит в них вследствие некоторого "флюсования" сплава расплавом соли. Другая группа механизмов отличается тем, что в процессах образования продуктов химических реакций, не обладающих защитными свойствами, главную роль играют некоторые компоненты, входящие в состав осажденной соли (например, S или С1). Иногда влияние осажденного слоя на реакции в системе сплав-газ может быть и незначительным. В таких случаях осадок на поверхности сплавов часто формируется в виде пористой твердой фазы. Механизм развития  [c.68]


Первая группа факторов определяет характер напряженного состояния в металле поверхностных слоев и тепловые явления в зоне трения. Вторая группа факторов — жидкая, газообразная и твердая среда — определяет адсорбционные, химические и диффузионные процессы на поверхности трения и в поверхностных слоях, а твердая среда, кроме того, может вызывать иногда один из самых неблагоприятных видов изнашивания — абразивный. Факторы третьей группы — механические свойства, структура, внутреннее строение и химический состав металла — также существенно влияют на процессы трения и изнашивания, изменяя их качественные и количественные показатели (виды и скорости изнашивания). Влияние каждой из этих трех групп факторов сложно и разнообразно. Будучи несущественным в одних условиях, оно оказывается решающим в других. Поэтому роль того или иного из них необходимо оценивать лишь в совокупности с другими факторами, а приведенные ниже примеры, в основном из практики ПТМ, следует рассматривать как частные закономерности, присущие данным условиям эксплуатации, поскольку в других условиях они могут быть иными.  [c.81]

Медь — химический элемент 1 группы Периодической системы элементов, порядковый номер 29, атомная масса 63,54. Медь — металл красного, в изломе розового цвета. Температура плавления 1083 " С. Кристаллическая г. ц. к. решетка с периодом а = 0,36074 нм. Плотность меди 8,94 г/см Медь обладает наибольшей (после серебра) электропроводностью и теплопроводностью Удельное электросопротивление меди составляет 0,0178 мкОм-м. В зависимости от чистоты медь поставляют следующих марок МОО (99,99 % Си), МО (99,95 % Си), Ml (99,9 % Си), М2 (99,7 % Си), М3 (99,5 % Си) и М4 (99,0 % uV Присутствующие в меди примеси оказывают большое влияние на ее свойства.  [c.342]

Идеальные кристаллы характеризуются свойствами однородности и анизотропии. Однородность определяет неизменность свойств при перемещении точки измерения на расстояние, кратное периодам решетки. Анизотропия — зависимость свойств от направлений. Она зависит от группы симметрии. Принимая среду однородной, пренебрегают влиянием дефектов решетки блоков, дислокаций и т. п. В сравнительно сложных соединениях от точки к точке в той или иной степени изменяется стехиометрия (т. е. локальный химический состав кристалла). Например, в кристалле ниобата лития соотношение между оксидами лития и ниобия может изменяться иногда даже от 0,9 до 1,1. От дефектов и состава зависят также свойства кристаллов, но так как эта зависимость сравнительна слабая, приведенные свойства приписываются однородному кристаллу с идеализированным составом.  [c.34]

Свойства подавляющего большинства синтетических материалов иод влиянием света, особенно вместе с дождем и ветром, ухудшаются, причем происходит поверхностное окисление материалов с образованием полярных групп. При одновременном действии облучения и влажности существенно ускоряются физико-химические изменения некоторых материалов.  [c.142]

Испытания на коррозионную усталость, как известно, характеризуются неизбежным разбросом результатов эксперимента. Разброс вызывается погрешностью машин, условиями проведения опыта, точностью и технологией изготовления образцов и др., а также неоднородностью структуры и химического состава испытываемого материала. (наличие неметаллических включений, микротрещин, химическая неоднородность, анизотропность механических свойств и пр.). Если влияние первой группы факторов можно значительно уменьшить усовершенствованием оборудования и методики испытаний, то рассеяние экспериментальных данных, вызванное неоднородностью материала, связано со статистической природой коррозионно-усталостного разрушения и его нельзя полностью устранить. Его необходимо учитывать при испытаниях достаточно большого числа образцов, а результаты опыта желательно обрабатывать с помощью методов математической статистики.  [c.32]


В 1932 г. в Англии был предложен способ оценки износа по изменению содержания железа в смазочном масле (определяется химическим анализом). Этот способ оказался особенно эффективным для определения износа деталей (главным образом поршневых колец, цилиндров и т. д.) работающего двигателя. Он позволяет, не разбирая двигатель, судить о ходе износа, сравнивать влияние на износ разных топлив и смазок исследовать влияние на износ различных конструктивных факторов, свойств материалов деталей поршневой группы и т. д. [39, 45, 22].  [c.200]

Белковые вещества объединяют чрезвычайно большую и разнообразную группу азотсодержащих полимеров органического типа. По химическому составу все белковые вещества разделяются на простые белки (протеины) и сложные белки (протеиды). Под влиянием различных факторов — химических (процессы дубления, денатурации и т. п.) или теплового воздействия — белковые вещества теряют растворимость и пластичные свойства. Удельный вес такого рода полимеров в промышленности пластмасс невелик. Наибольшее практическое значение из них приобрели некоторые сложные белковые соединения, содержащиеся в молоке (сычужный казеин). Галалит — продукт термохимических превращений казеина, имеет ряд недостатков пониженную водостойкость, которая выражается в склонности к набуханию и потери механических свойств, и малую устойчивость к микологическим поражениям. Это ограничивает применение галалита в машиностроении.  [c.344]

Многочисленные данные по влиянию строения молекул ингибитора на их зац(итные свойства можно условно разделить на 2 группы 1) влияние химической структуры молекул на их защитные свойства, 2) влияние электронной структуры молекул на их защитные свойства.  [c.42]

Все стали можно разделить на две большие группы углеродистые конструкционные легированные. Принадлежность к той или иной группе определяется химическим составом сталей, оказывающим сильное влияние на их структуру, механические и физико-химические свойства.  [c.364]

В предыдущих главах было показано, что боковая группа линейных или сетчатых полимеров влияет на физические и химические свойства этих полимеров. Примером такого влияния может служить разная растворимость полиэтилена, полихлорвинила и поливинилового спирта, обусловленная различием боковых групп этих полимеров. Можно указать и на другой пример различной растворимости нитроцеллюлозы, этилцеллюлозы и ацетилцеллюлозы. Эти три эфира целлюлозы, кроме того, различаются вследствие разного строения боковых групп и по твердости, несмотря на одинаковый молекулярный вес. Они различаются также и по стойкости к действию щелочей простые эфиры более стойки к действию щелочей, чем любой сложный эфир.  [c.649]

Влияние второй группы факторов характерно зависимостью от первой, так как физико-химические процессы активируются при деформации, причем деформация, способствующая развитию дефектов, создает условия для взаимодействия среды со значительными объемами металла. Таким образом, влияние этой группы факторов связано со свойствами коррозионной среды (см. I—2) и состоянием металла, особенно егр приповерхностного слоя (см. II).  [c.177]

Сложность проблемы старения состоит в том, что химическая природа полимеров различна, поэтому и механизмы процессов деструкции и структурирования молекулярных цепей не идентичны. Различие в природе и химических свойствах мономерных звеньев полимерных материалов настолько велико, что влияние факторов среды становится Неоднозначным. Незначительное изменение в структуре, появление новой функциональной группы или ингредиента может резко изменить стабильность полимера. Такие же колебания стабильности полимеров возможны при изменении факторов среды (температуры, влажности, загрязнения поверхности и т.п.).  [c.43]

Морфология поверхности раздела между твердой и жидкой фазами при заданных условиях роста будет зависеть от ряда факторов, которые можно разбить на три основные группы 1) все параметры, которые оказывают влияние на свободную энергию соприкасающихся фаз, т. е. распределение температуры Г, распределение примесей С и кривизна поверхности К 2) механическое равновесие с различными поверхностями границами зерен, внешними поверхностями и внутренними межфазными границами 3) атомная кинетика процесса кристаллизации и ее анизотропия. В свою очередь от особенностей морфологии поверхности раздела зависят свойства выращиваемого кристалла, поскольку структура поверхности раздела оказывает очень сильное влияние на распределение химических и физических дефектов в кристалле.  [c.176]

Как уже отмечалось, к группе плавленых силикатных материалов относятся каменное литье, ситаллы и шлакоситаллы [218]. Свойства каменного литья определяются его фазовым (минеральным) составом, в котором преобладают кристаллические фазы. Известное влияние на свойства каменного литья оказывает и стекловидная фаза. Обычно фазовый состав каменного литья отличается от состава исходного сырья даже при нх одинаковом химическом составе. Это связано с различием естественных и промышленных условий кристаллизации.  [c.201]

В большинстве случаев отдельные узлы машин и механизмов изготовляют сваркой. Свойства стали в зоне сварного шва определяются химическим составом стали. Поэтому нужно гарантировать химический состав стали. В то же время те части изделия, которые не подвергаются тепловому влиянию зоны сварного шва, сохраняют исходную структуру и свойства, полученные при прокатке. Поэтому такой металл поставляют с гарантированными механическими свойствами и химическим составом (сталь группы 5).  [c.138]


Неметаллические включения (рис. 88), представляющие пустоты в металле шва, заполненные неметаллическими веществами (шлаками, окислами), как правило, присутствуют в металле сварных швов. Их состав, количество, размер, форма и распределение в металле шва могут оказать заметное влияние на механические свойства сварных соединений. Неметаллические включения можно разделить на включения, которые образуются в металле сварочной ванны в результате различных физико-химических процессов, и на включения, вносящиеся в сварочную ванну извне. Большинство неметаллических включений относится к первой группе и их образованию способствует обогащение жидкого металла примесями вследствие ликвационных явлений и понижение совместной растворимости примесей при охлаждении металла сварочной ванны. Извне неметаллические включения могут быть внесены в результате перехода в сварочную ванну части расплавленного покрытия в виде отдельных капель или вместе с электродным металлом за счет перехода окислов (соединение металла с кислородом), находящихся на поверхности свариваемых деталей, или неполного удаления шлако вой корки с поверхности предыдущего валика. Размеры неметаллических включений влияют на скорость их удаления из расплавленного металла и в значительной степени- на механические характеристики сварного соединения. Зародыши включений могут увеличиваться  [c.235]

Влияние термической обработки и состояния поверхности на коррозию. Химическая стойкость железохромистых сплавов зависит также от термической обработки и состояния поверхности. Практическое применение как химически стойкие материалы получили стали трех групп, содержащие 13, 17 и 27% Сг и отличающиеся как по структуре, так и по своим свойствам. Стали, содержащие 12—13% Сг, находят широкое применение в турбостроении для изготовления различных деталей, арматуры и других изделий, не подвергающихся действию относительно высокоагрессивных сред. Стали этого типа, содержащие углерод в пределах 0,1—0,4%, применяются преимущественно в термически обработанном, закаленном и отпущенном состояниях.  [c.116]

Медь — химический элемент I группы периодической системы Менделеева, порядковый номер 29, атомный вес 63,54. Медь металл красного, в изломе розоватого цвета. Температура плавления 1083° С. Кристаллическая ГЦК-решетка с периодом а = 3,6080 кХ. Плотность меди 8,94 г см . Медь (после серебра) обладает наибольшей электропроводностью и теплопроводностью Удельное электросопротивление меди составляет 0,0178 ом-м 1м. В зависимости от чистоты медь поступает следующих марок МОО (99,99% Си), МО (99,95% Си), М1 (99,9% Си), М2 (99,7 Си), М3 (99,5% Си) и М4 (99,0% Си.) Присутствующие в меди примеси оказывают большое влияние на ее свойство.  [c.369]

Способ выплавки стали оказывает большое влияние на ее механические свойства при данном химическом составе. Так, бессемеровская сталь, более богатая азотом и фосфором, чем мартеновская, обладает при данном содержании углерода и марганца более высокой прочностью и твердостью и меньшей пластичностью. Поэтому в сталях группы Б одной и той же марки содержание углерода изменяется в зависимости от способа выплавки — в бессемеровской стали оно соответственно ниже. В обозначении марок стали группы Б имеется буква, характеризующая способ выплавки М — мартеновская сталь, Б — бессемеровская сталь.  [c.247]

К группе конверсионных относят неметаллические неорганические покрытия, которые не наносятся извне на поверхность деталей, а формируются на ней в результате конверсии (превращений) при взаимодействии металла с рабочим раствором, так что ионы металла входят в структуру покрытия. Основой их являются оксидные или солевые, чаще всего фосфатные пленки, которые образуются на металле в процессе его электрохимической или химической обработки. Наиболее широкое распространение получили оксидные покрытия алюминия и его сплавов. Это связано с тем, что по разнообразию своего функционального применения, определяемого влиянием на механические, диэлектрические, физико-химические свойства металла основы, такие покрытия почти не имеют равных в гальванотехнике. Полученные оксидные пленки надежно защищают металл от коррозии, повышают твердость и износостойкость поверхности, создают электро- и теплоизоляционный слой, легко подвергаются адсорбционному окрашиванию органическими красителями и электрохимическому окрашиванию с применением переменного тока, служат грунтом под лакокрасочные покрытия и промежуточным адгезионным слоем под металлические покрытия. Эти характеристики относятся к оксидным покрытиям, полученным электрохимической, прежде всего анодной обработкой металла. Хотя выполнение химического оксидирования проще, не нуждается в специальном оборудовании и источниках тока, малая толщина получаемых покрытий, их низкие механические и диэлектрические характеристики существенно ограничивают область его применения.  [c.228]

Сварочный флюс должен удовлетворять определенным требованиям, которые можно разделить на две самостоятельные группы металлургические и технологические. Значение этих требований неодинаково и меняется в зависимости от способа сварки. При обычной сварке под флюсом наиболее важными являются металлургические требования. Это обусловлено тем, что в процессе дуговой сварки протекают реакции химического взаимодействия между шлаком и жидким металлом, которые оказывают существенное влияние на состав, структуру и механические свойства металла шва, а также на его склонность к образованию пор и горячих трещин.  [c.249]

Процесс внешнего трения представляет собой сложную совокупность механических, физических и физико-химических явлений. Основные факторы, влияющие на трение и износ фрикционных пар, условно разделяют на три группы технологические (структура, химические, физические и механические свойства) конструктивные (схема контакта, макро- и микрогеометрия поверхностей трения, геометрический фактор Ква конструкция рабочих поверхностей, способ подвода смазки) эксплуатационные (удельная работа трения, относительная скорость скольжения, удельная нагрузка, температурный режим, смазка и ее свойства). В процессе трения под влиянием указанных факторов формируются поверхностные слои твердых тел, 6б усЖ0Нливаюш ие механизм трения и износа и отличающиеся специфическим структурным состоянием. Образующиеся в процессе трения поверхностные слои твердых тел характеризуются повышенной свободной энергией, физической и химической активностью, а также иными механическими свойствами, чем более глубоко лежащие слои, не участвующие в процессе контактирования. Поверхностные слои определяют механизм контактного взаимодействия и уровень разрушения при трении.  [c.26]

При исследовании расположения электронов для каж-аиги ) дельного зле , ента выясняется, что нанбольшее влияние на химические свойства элементов оказывают электроны внешней оболочки атома. В табл. 1-1-2 приведено расположение электронов для элементов, разделенных на группы по однородности химических свойств. Элементы гелий, неон, аргон имеют полностью заполненные оболочки К, Ь, М. Такие оболочки называют замкнутыми электронными оболочками. Элементы с замкнутыми оболочками обладают низкой химической активностью и не образуют химических соединений с другими элементами. В противоположность рассмотренным элементам у ш,елочных металлов лития, натрия, калня на внешней оболочке имеется только один электрон. Он определяет валентност ) атома. Эти элементы проявляют высокую химическую активность и потому легко образуют одновалентные положительные ионы. В отличие от ш,елочных металлов у элементов группы галогенов — фтора, хлора и т. д. — для образования замкнутой оболочки недостает одного электрона. Это является причиной того, что галогены легко образуют одновалентные отрицательные ионы.  [c.23]


Экспериментальные, данные и опыт эксилуатации полимерных материалов в условиях воздействия агрессивных сред позволяют делать выводы о связи мелгду структурой высокомолекулярных соединений и их химической стойкостью. В отличие от низкомолекулярных соединений, макромолекула содержит большое число реакционноспособных групп, в зависимости от характера которых или замены их другими группами свойства полимера могут в значительной степени изменяться в сторону их ухудшения или улучшения. Например, на поливиниловый спирт, содержащий гидроксильные группы, оказывают влияние вода, кислоты и щелочи. Стойкость иоливинилацет ата, полиакриловой кислоты и других высокомолекулярных соединений, которые можно представить как производные полиэтилена при частичном или полном замещении водорода гидроксильными, ацетатными или другими функциональными группами, также понижена. Соединения, у которых водоро.т в полиэтиленовой цепи замещен фтором или фтором и хлором, стойки во всех агрессивных средах.  [c.357]

Синтетические полимеры, наиболее широко использующиеся в промышленности пластмасс, обладают относительно высокими значениями молекулярного веса (М. В.). Различают так называемые высоконоли-меры (М. В. > Ю" ) и олигомеры (М. В. Ю ). Некоторые из олигомеров имеют химически активные функциональные группы и способны при определенных условиях (в присутствии отвердптелей, при нагревании и т. п.) превращаться в высокополимеры. Подобные реакционноспособные олигомеры обычно участвуют в составе пластмассовых полуфабрикатов, оказывая существенное влияние на их технологические свойства и свойства получаемых деталей, где они выступают в роли завершенного полимера.  [c.344]

При хранении твердого топлива его физико-химические свойства оказывают существенное влияние на изменение качества и состояния. Большинство углей, торфа и сланцев хранится на открытых складах. Исключение составляют мелкие котельные теплопроизво-дительностью до 5,8 МВт, у которых закрытые расходные склады могут находиться в ячейке котельной со стороны торца расширения. По условиям хранения топливо при штабелировании делится на две категории А - не требующее послойной укатки при закладке штабеля, Б - требующее обязательного тщательного уплотнения каждого слоя. В случае смешения углей, относящихся к обеим группам, их относят к категории Б. Характеристика углей основных бассейнов и месторождений по склонности к окислению и самовоз-гаранию и предельно допустимые сроки их хранения на складах приведены в табл. 1.3. Подмосковный, челябинский, кизеловский угли не должны храниться на складах топлива более 4 мес.  [c.23]

Прочность адгезионной связи между волокнами и матрицей оказывает решающее влияние на прочность композиций с короткими волокнами. Необходимо добиваться максимальной сдвиговой прочности по границе раздела волокно — полимер. В промышленности стеклопластиков успешно применяются аппреты, способствующие повышению адгезионной прочности стеклянных волокон к полиэфирным и эпоксидным смолам. Физико-химические процессы, протекающие при аппретировании стеклянных волокон, изучены достаточно хорошо [63]. В качестве аппретов обычно используют кремнийорганические соединения, в которых органический радикал совместим с полимерной матрицей. При гидролизе одной или нескольких связей =Si—OR в молекуле аппрете образуются силанольные группы =Si—ОН, способные реагировать с аналогичными группами гидрофильной поверхности стеклянных волокон. Теоретически мел<ду стеклом и полимерной матрицей образуются ковалентные связи. Важнейшей особенностью стеклопластиков с обработанными аппретами стеклянными волокнами является значительно меньшая потеря ими прочности и жесткости при выдержке во влажной среде. Аппреты повышают прочность при изгибе и сдвиге однонаправленных стеклопластиков, однако они оказывают значительно меньший эффект на прочность при растяжении. В полимерных композициях с короткими волокнами использование аппретов целесообразно, если они обеспечивают заметное улучшение их свойств. В полиэфирных и эпоксидных стеклопластиках адгезионная прочность между стеклянным волокном и связующим достаточно высока и без использования аппретов вследствие хорошего смачивания волокон жидкими смолами, однако в термопластах, наполненных волокнами любых типов, значительно труднее добиться хорошего смачивания волокон полимерами и высокой адгезионной прочности между ними. Большое число исследований проведено по нахождению усло-, ВИЙ аппретирования стеклянных волокон, вводимых в термопла-  [c.97]

Исследования тонкой структуры углеродных волокон, полученных из полиакрилпитрильного сырья [7, 30, 43 и 92], подтвердили сходство основных элементов их структуры. Размер элементарных фибрилл в этих волокнах колеблется от 250 до 1000 А, в волокнах также присутствуют различные внутренние дефекты (рис. 9), наличие которых требует тш,ательного 1 онтроля механических характеристик углеродных волокон потребителем. Помимо внутренних дефектов, на механические характеристики углеродных волокон и, следовательно, на свойства получаемых на их основе композиционных материалов оказывают большое влияние различные поверхностные дефекты и морфология поверхности волокон (удельная поверхность, шероховатость, распределение поверхностной пористости), а также химические и термодинамические характеристики поверхности (природа функциональных групп — наличие оксинитридов, атомарного кислорода или карбоксильных групп, смачиваемость и адсорбционные свойства). Поверхностные характеристики углеродного волокна чрезвычайно важны для оценки возможности взаимодействия волокон с металлической матрицей. Некоторые данные о поверхностных свойствах углеродных волокон приведены в обзоре [19].  [c.353]

Сталь группы Б подвергают у потребителя обработке, при которой механические свойства меняются, и уровень их, помимо условий обработки, определяется химическим составом. От последнего зависят также режимы горячей обработки у потребителя. Если при изготовлении конструкцией и деталей применяется сварка, то гарантируются и химический состав, и механические свойства (группа В). Это необходимо потому, что свариваемость й механические свойства в зоне влияния сварки зависят от химического сбстава, а в остальных частях изделия свойства сохранятся на уровне, достигнутом на металлургическом заводе.  [c.79]

Изучены физические и физико-химические свойства полученных олигомеров, показана определяицая роль влияния концевых функциональных групп на реологические свойства, термостабильность, химическую стойкость, совместимость с высокополярными олигомерами.  [c.117]

К сожалению, бо-лыпинство фирм, которые изготавливают ингибиторы коррозии, не сообщают их состав, поэтому подчас трудно составить себе представление о том, какие химические соединения или функциональные группы в сложных соединениях или смесях выполняют защитные функции. Знать же это совершенно необходимо для понимания механизма защиты металлов ингибиторами. В связи с этим рассмотрение пассивирующих и защитных свойств различных неорганических и органических соединений представляет большой интерес. Не менее важным является установление общих закономерностей защиты металлов от коррозии ингибиторами характер адсорбции, в.лияние ингибиторов на электрохимическую кинетику, связь между составом и структурой химических соединений и их защитными свойствами, влияние ингибиторов на поведение многоэлектродных систем, методы определения защитных свойств ингибиторов, возможность развития локальной коррозии в присутствии ингибиторов. Рассмотрение этих вопросов, несомненно, облегчит труд исследователей, занимающихся поисками новых ингибиторов, а также труд инженерных работников, использующих ингибиторы коррозии в технике.  [c.6]

Исследования влияния допустимого содержания сурьмы в припоях Sn—РЬ на их физико-химические свойства позволили классифицировать эти припои на 3 группы-(ГОСТ 1499—70) 1) бессур-мянистые припои с содержанием до 0,05% Sb. Эти припои применяют, если необходимы высокая пластичность и вакуумная плотность паяных швов 2) малосурьмянистые припои, содержащие 0,2—0,5% Sb, с повышенной пластичностью, обеспечивающие плотные швы и применяемые для оцинкованных и цинковых деталей 3) сурьмянистые припои, содержащие 2—5% Sb их широко используют в различных отраслях техники, где требуется повышенная прочность паяных швов, и при абразивной пайке.  [c.84]

Свойства материалов химические (стойкость к воздействию той ила иной группы сред или конкретной агрессивной среды) механические и термические, их взаимное влияние технологические, определяющие возможность практического применения материала, выбор способа переработки его в изделие или использования для запдиты от коррозии.  [c.10]

Молекулы углеводорода состоят из большого количества изопентеновых групп, содержащих двойные связи. Это обусловливает повышенную активность НК к действию ряда химических веществ. Под влиянием кислорода происходит деструкция полимерной цепи, снижение молекулярной массы, потеря эластичности и возрастание пластичност каучука. НК является кристаллизующимся полимером. Не-полярность натурального каучука обусловливает его высокие электроизоляционные свойства. Он применяется в основном в электроизоляционных резинах.  [c.100]


Качество обработанной поверхности любых материалов характеризуется большим количеством различных параметров, которые укруп-ненно можно разделить на две группы физико-химические и геометрические параметры, причем в зависимости от свойств материала и методов обработки наиболее существенное влияние на эксплуатационные характеристики изделий оказывают те или иные из них.  [c.45]

Вторая стадия, до влажности, примерно равной или меньше гигроскопической, характеризуется полис-лойной адсорбцией молекул воды (дальний порядок гидратации), а также связыванием молекул воды с гидроксильными группами па поверхности решетки глинистых частиц. Эта вода характеризуется небольшой силой связи с поверхностью, значительной подвижностью, но отличается по структуре и свойствам от свободной воды. Ее молекулы полностью экранированы влиянием полей поверхности частиц и ионов и не могут физико-химически взаимодействовать с другими веществами (частицами). Она удаляется в процессе сушки при 100 — 120°С. Прочно и слабосвязанная вода характеризуют максимальную гигроскопическую влажность.  [c.245]

В настоящее время серийно применяется довольно большое число титановых сплавов. Большой диапа.зон их структур и свойств обусловлен, в частности, полиморфизмом титана, хорошей растворимостью многих элементов (по крайпеп мере в одной из фаз), а также образованием химических соединений, обладающих переменной растворимостью в титане. В соответствии с приведенными выше диаграммами состояния все легирующие элементы по влиянию на полиморфизм титана можно разбить на три группы. Первая группа представлена а-стабилизаторами — элементами, повышающими стабильность а-фазы из металлов к числу а-стабилизаторов относится алюминий. Ко второй группе принадлежат -стабилизаторы — элементы, повышающие стабильность р-фазы эти элементы в свою очередь можно разбить на две подгруппы. В сплавах титана с элементами первой подгруппы при достаточно низкой тедшературе происходит эвтектоидный распад р-фазы к числу таких элементов относятся хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт. В сплавах титана с элементами второй подгруппы при достаточно высокой их концентрации Р-твердый растнор сохраняется до комнатной температуры, не претерпевая эвтектоидного распада. Такие элементы иногда называют изоморфными р-стабилизаторами. К ним пр1шадле-жат ванадий, молибден, ниобий, тантал. Третья группа прелстаклена нейтральными упрочнителями, т. е. легирующими элементами, мало  [c.402]

К другой группе относят эффекты, которые вызываются в основном обратимыми физическими и физико-химическими процессами, приводящими к понижению свободной поверхностной энергии твердого тела. Эти эффекты приводят к более или менее значительному изменению самих механических свойств материала. Понижение прочности и пластичности твердых тел в результате физико-химического влияния окружающей среды и соответствующего снижения свободной поверхностной энергии тела называется эффектом Ребиндера — по имени П. А. Ребиндера, который в 1928 г. открыл и впервые исследовал этот эффект. Эффект Ребиндера может проявляться на любых твердых телах — кристаллических и аморфных, сплошных и пористых, металлах и полупроводниках, ионнных и ковалентных кристаллах, стеклах и полимерах. В качестве примера проявления эффекта Ребиндера можно назвать значительное понижение прочности стекла или гипса вследствие адсорбции водяных паров. Другой пример — медь, покрытая тонкой пленкой расплавленного висмута, утрачивает присущую ей высокую пластичность и хрупко разрушается при напряжении, которое намного ниже, чем при растяжении на воздухе.  [c.228]

Материалы об электрохимическом осаждении металлов изложены в том порядке, который эти металлы занимают в Периодической системе элементов, поскольку их свойства, в особенности свойства соответствующих химических соединений, оказывают влияние на свойства электролитов, характер химических и электрохимических реакций, протекающих при нанесении покрытий. Так, общность элементов первой группы — меди, серебра, золота проявляется в способности образовывать комплексные соединения с цианидом, дифосфатом и некоторыми другими лигандами, что нашло отражение в составах электролитов для электрохимического осаждения этих металлов. Приводимые в книге сведения  [c.3]


Смотреть страницы где упоминается термин 654 - Группы 646,649,653,655 - Влияние свойства 646, 650, 654 - Химический : [c.131]    [c.39]    [c.221]    [c.380]    [c.233]    [c.75]    [c.794]    [c.221]    [c.55]    [c.302]   
Машиностроение энциклопедия ТомII-2 Стали чугуны РазделII Материалы в машиностроении (2001) -- [ c.0 ]



ПОИСК



141 — Влияние на свойства

Влияние Химические свойства



© 2025 Mash-xxl.info Реклама на сайте