Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влагосодержанне

Влагосодержание, абсолютная и относительная влажность. Масса пара в 1 м влажного воздуха, численно равная плотности пара р при парциальном давлении р , называется абсолютной влажностью. Отношение действительной абсолютной влажности воздуха р к максимально возможной абсолютной влажности ps при той же температуре называют относительной влажностью и обозначают через ср  [c.42]

Максимально возможное влагосодержание достигается при полном насыщении воздуха водяными парами (ф=1)  [c.42]

Общие понятия. Абсолютная влажность, влагосодержание и относительная влажность воздуха  [c.236]


Отношение массы пара т во влажном воздухе к массе сухого воздуха Шв в нем называют влагосодержанием воздуха и измеряют в кг/кг или г кг  [c.238]

Подставив в уравнение (15-3) значение Рв из уравнения (15-1), найдем величину влагосодержания  [c.238]

Из уравнения (15-4) видно, что с увеличением парциального давления пара р , влагосодержание d увеличивается.  [c.238]

Максимальное значение влагосодержания зависит от температуры и давления влажного воздуха. Если температура влажного воздуха будет ниже температуры насыщения водяного пара г[ри давлении смеси, то максимальное влагосодержание будет определяться отношением давления насыщенного водяного пара при температуре смеси к парциальному давлению воздуха.  [c.238]

Если температура влажного воздуха будет более высокой или равной температуре насыщения водяного пара при давлении смеси, предельное значение влагосодержания равно бесконечности, так  [c.238]

Из уравнений (15-4) и (15-6) можно получить выражение, связывающее влагосодержание с относительной влажностью  [c.239]

Более точно относительная влажность и влагосодержание влажного воздуха определяются при помощи психрометра. Психрометр состоит из двух термометров сухого и мокрого. Шарик ртути мокрого термометра обернут тонким слоем ткани, которая непрерывно смачивается водой. С поверхности материи на шарике испаряется вода и он показывает более низкую температуру, чем сухой термометр. Очевидно, что сухой термометр будет показывать действительную температуру влажного воздуха t , а мокрый показывает температуру испаряющейся воды Зная психрометрическую разность температур t — tu, можно по специальным психрометрическим таблицам определить относительную влажность и влагосодержание воздуха.  [c.240]

Таким образом, линии влагосодержания d будут вертикальными, а линии энтальпии i — наклонными прямыми. На диаграмме нанесены следующие линии линии постоянных энтальпий (прямые, наклонные к оси ординат под углом 45 ) линии постоянных влаго-содержаний (прямые, параллельные оси ординат) линии постоянных температур влажного воздуха линии относительной влажности воздуха.  [c.241]

Что называется влагосодержанием влажного воздуха  [c.243]

В каких пределах может изменяться влагосодержание  [c.243]

Пример 15-1. Для сушки макарон используют воздух при == = 25° С с относительной влажностью ф = 50%. В воздушном подогревателе воздух нагревают до (г = 90 С и направляют в сушилку, откуда он выходит при температуре = 35° С. Определить конечное влагосодержание воздуха, расход тепла и воздуха на 1 кг испаренной влаги. Процесс насыш,ения влажного воздуха считать идеальным.  [c.244]

При наличии температурного градиента внутри влажного материала влага будет перемещаться в направлении потока теплоты. Это создает в материале градиент влагосодержания.  [c.504]

Знак минус в уравнениях указывает на то, что в направлении нормали влагосодержание уменьшается.  [c.504]

Он зависит от влагосодержания и температуры.  [c.504]

Соотношение (31-1) является основным законом перемещения влаги в коллоидном капиллярнопористом теле как в виде пара, так и в виде жидкости при наличии градиента влагосодержания.  [c.505]

Дифференциальные уравнения для переноса тепла и массы вещества (31-9) и (31-10) полностью описывают внутренний тепло-и массоперенос. Решение этих уравнений при условии постоянства массообменных характеристик дает возможность теоретически рассчитать поле температуры и влагосодержания влажного материала.  [c.508]


Большое влияние на величину X оказывает форма связи влаги с материалом. Коэффициент теплопроводности влажного тела зависит от температуры н влагосодержания. Экспериментальные значения коэффициента теплопроводности влажных тел в гигроскопической области свидетельствуют о значительном увеличении коэффициента теплопроводности с повышением температуры, что объясняется интенсификацией массообмена по мере роста температуры. В этом случае перепое вещества в основном происходит в виде пара.  [c.517]

С учетом разности влагосодержания расчетное расхождение по абсолютным эффектам охлаждения ЪТ должно было составлять 15,5 К даже при /, = 0,18 МПа. В опытах же это значение не превышало 10 К. На основании этого результата авторами был сделан вывод о том, что на выходе из соплового ввода закручивающего устройства водяные пары находятся в переохлажденном состоянии, таким образом, конденсация и льдообразование происходят за соплом в камере энергетического разделения.  [c.63]

Нетрудно видеть, что парциальное давление водяного пара при данном давлении влажного воздуха является функцией только влагосодержания, и наоборот. Поэто.му аналогично уравнениям (279) и (280) можно написать  [c.281]

Найти парциальное давление пара в воздухе и его влагосодержание.  [c.290]

В оросительных камерах тепловлажностная обработка воздуха произподится холодной или горячей водой, раз()рызги-ваемой форсунками, причем заданный режим достигается подбором температуры воды. Так, если температура воды равна температуре точки росы воздуха, то он будет охлаждаться без изменения своего влагосодержания. Если температура воды превышает температуру точки росы воздуха, то его влагосодержание будет расти за счет испарения разбрызгиваемой воды (произойдет доунлажне-ние воздуха). Доувлажнение позволяет также снизить температуру возд/ха (на испарение воды расходуется скрытая теплота парообразования, забираемая из воздуха). Оно широко применяется в системах кондиционирования />ля текстильной, полиграфической, химической и других отраслей промышленности.  [c.199]

Следователыю, величина d измеряет массу пара, содержащегося в 1 кг сухого воздуха или в(1 + d) кг влажного воздуха. Величину влагосодержания d можно определить следующим 06pa30Nr. Уравнения состояния для 1 кг сухого воздуха и водяного пара, входящих ъ V м влажного воздуха,  [c.238]

Из этого выражения следует, что в области, где температура влажного воздуха выше температуры насыщения водяного пара при давлении смеси, т. е. когда р акс = р, относительная влажность зависит только от влагосодержания и при d = onst меняться не будет.  [c.239]

Процесс нагревания влажного воздуха совершается при неизменном влагосодержании, т. е. при d = onst. На id-диаграмме этот  [c.242]

Процесс конденсации можно условно считать проходящим по линии ф = 100%. Например, количество воды, образовавшейся в результате конденсации от точки О до точки s, на 1 кг сухого воздуха будет равно разности влагосодержаний di — d.2- Идеальный процесс насыщения воздуха влагой в условиях постоянного давления происходит при неизменной энтальпии влажного воздуха (t = onst) и изобразится на id-диаграмме отрезком МС. При этом под идеальным процессом подразумевается такой, в котором вся теплота идет только на испарение влаги, т. е. не учитываются потери теплоты в окружающую среду и расход теплоты на подогрев жидкости.  [c.243]

В id-диаграмме (см. рис. 15-2) на пересечении линий /i =-= 25° С и ф == 50 % находим точку, по которой определяем начальное влагосодержание dx = 10,0 г кг и энтальпию it = 50,0 кдж/кг. Так как нагревание воздуха совершается при неизменном влагосодержании d = onst, то на пересечении с изотермой 2 = 90° С находим точку, которая характеризует состояние нагретого воздуха по выходе из подогревателя. Из этой точки проводим линию при i = onst до пересечения с изотермой ts =-- 35° С, где определяем точку, которая характеризует состояние воздуха по выходе из сушилки. Для гой точки находим ds = 32,0 г/кг, == гз = 117,5 кдж/кг и фг == 90%. Следовательно, в процессе сушки 1 кг сухого воздуха испарилось влаги d — di = 32,0—10,0 = 22,0 г/кг. Поэтому для испарения 1 кг влаги потребуется 1000 22 = 45,5 кг сухого нагретого воздуха. Расход тепла на нагрев 1 кг воздуха в воздушном подогревателе составляет 12 — ii 117,5—50 = 67,5 кдж/кг. Расход тепла на 1 кг испаренной влаги составит q 67,5-45,5 = 3070 кдж/кг.  [c.244]

При наличии градиента влагосодержания в коллоидном капил-ляриопористом теле влага будет перемещаться от мест с большей влажностью к местам с меньшей влажностью. Перемещение влаги будет происходить как в виде пара, так и в виде жидкости. Плотность потока жидкости и пара, проходящих через единицу поверхности, перпендикулярной направлению перемещения, в единицу времени, пропорциональна градиенту влагосодержания коллоидного капилляриопористого тела  [c.504]

Если внутри влажного материала имеется градиент влагосодержания и градиент температуры, то влага будет перемещаться вследствие влагопроводности и термовлагопроводности. Например, при контактной сушке и сушке токами высокой частоты направления градиента влагосодержания и градиента температуры совпадают, поэтому явление термовлагопроводности усиливает общую влагопро-водность и процесс сушки происходит более интенсивно (рис. 31-1). Действительно, из-за отдачи теплоты в окружающую среду поверхностные слои материала охлаждаются, и температура их становится ниже, чем внутри материала. Такое распределение температуры вызывает температурный градиент, направленный от поверхности материала к середине, который увеличивает общую влагопроводность.  [c.505]


Пели градиенты влагосодержания и температуры обратны по наиравлегшю, то направление суммарного потока влаги зависит от  [c.505]

Например, при конвективной сушке нз-за испарения влаги и прогрева материала с поверхности внутри материала (рис. 31-2) появится градиент влагосодержания направленный от поверхности к середине материала и за счет термовлагопроводности —  [c.506]

Если термовлагопроводность более интенсивна, чем влагонро-водность, то влага будет перемещаться по направлению потока теплоты, т. е. в направлении увеличения влагосодержания — от поверхности материала к середине, а влагопроводность будет уменьшать поток влаги. Например, это явление наблюдается в первый момент сушки инфракрасными лучами или в процессе выпечки хлеба, перемещение влаги в направлении потока теплоты будет постепенно увеличивать градиент влажности, отчего влагопроводность будет становиться более интенсивной, и наконец, наступит равенство этих движущих сил —термовлагопроводность будет полностью уравновешивать влагопроводность. С этого момента влажность в центральных слоях, будет оставаться постоянной, а сушка будет происходить за счет углубления зоны испарения, при этом перемещения влаги в центральных слоях не будет.  [c.506]

Если внутреннего испарения нет (е = 0), то влага перемещается в виде жидкости и внутренние источники теплоты, связанные с ис-пареюк м и конденсацией, отсутствуют. Если критерий внутреннего испарения равен единице (е == 1), то изменение влагосодержания в теле пронсходит только из-за испарения жидкости и конденсации пара перенос кидкости отсутствует. Следовательно, критерий внутреннего испарения может изменяться от О до 1. Он является функцией влажности и температуры, ио в определенном интервале температуры и влажности его можно считать постоянным.  [c.507]

Числовые значения массопереносных характеристик D, б, и, с материалов при различных температурах и влагосодержаниях определяются экспериментально. В тгастоящее время известно несколько методов определения массопереносных характеристик, разработанных советскими и зарубежными исследователями.  [c.508]

Для большинства влажных тел коэффициент температуропроводности с повышением влагосодержания вначале увеличивается, а потом уменьшается, так что кривая изменения коэ4х )ициента температуропроводности в зависимости от влагосодержания а — f u) имеет максимум. Этот максимум соответствует переходу от одной формы связи поглощенного веш ества к другой.  [c.518]

Термоградиентный коэффициент, или коэффициент термовлаго-проводности, б характеризует относительный термический массо-переиос пара и жидкости. Для большинства материалов коэффициент б с повышением влагосодержания сначала увеличивается, достигая максимального значения, а затем уменьшается. Он зависит от капиллярнопористой структуры тела и вида переноса вещества.  [c.518]

Зная влагосодержание, рассчитывают максимальное значение поправки из условия, что вся влага, подаваемая в камеру энерго-разцеления со сжатым воздухом, уносится с охлажденными массами газа, полностью вымерзая в них. Тогда, с учетом двойного фазового перехода пар—влага—кристаллы льда тепло, вьшеляе-мое в результате этого перехода  [c.62]

Отношение влагосодержания к максимально воа-можпому влагосодержанию влажного воздуха (ири той же температуре и давлении смеси) называют степенью насыщения и обозначают через  [c.282]

При сушке различных продуктов наг ретым воздухом влагосодержание его увеличивается за счет испарения воды. Этот процесс называют адиабатным испарением воды, если теплоту, необходимую для испарения, берем только из окружаюш,его воздуха. Температура воздуха при этом понижается, причем если этот процесс продолжается до полного насыщения воздуха, то температура его понижается до так называемой температуры адиабатного насыщения воздуха, известной также под названием истинной температуры мокрого термометра.  [c.283]


Смотреть страницы где упоминается термин Влагосодержанне : [c.504]    [c.505]    [c.506]    [c.508]    [c.509]    [c.510]    [c.62]    [c.63]    [c.64]    [c.290]   
Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.204 ]



ПОИСК



Влагосодержание



© 2025 Mash-xxl.info Реклама на сайте