Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конвекция гидростатическа

Конвейеры 121, VII. Конвекционные токи 789, X. Конвекция гидростатическая 789, X.  [c.470]

Около вертикальной плиты, погруженной в неограниченный поток покоящейся жидкости, под влиянием разности температур возникает свободная конвекция. При достаточно больших (по отношению к толщине слоя наибольших возмущений потока) размерах плиты возникающий пограничный слой можно считать плоским. Давление в каждом горизонтальном сечении такого потока равно гидростатическому давлению в невозмущенной области поскольку в пограничном слое =оУ Лу 1  [c.214]


Условие (1.8) означает, что давление вдоль жидкости не должно существенна изменяться. Отсюда, в частности, следует, что вертикальный масштаб области, в которой происходит конвекция, не должен быть слишком велик. Если обозначить характерный размер по вертикали /, то гидростатический перепад давлений, очевидно, имеет порядок ро /. Условия (1.7), (1.8) тогда можно переписать в виде  [c.9]

Полежаев В. И., Течение и теплообмен при естественной конвекции газа в замкнутой области после потери устойчивости гидростатического равновесия, Изв. АН СССР, МЖГ, 1968, № 5, 124.  [c.372]

Разбирая вопрос об особенностях распространения звука в свободной атмосфере, мы познакомились с рядом явлений, вызываемых неоднородным строением и турбулентностью атмосферы. Подобно воздушной оболочке, жидкая оболочка земли — море — также не представляет собой однородной и застывшей среды. С глубиной меняется температура воды и гидростатическое давление. В первой сотне метров под водой распределение температуры сильно зависит от метеорологических условий — времени года, времени суток, скорости ветра, облачности. Морские течения и конвекция приводят к появлению турбулентности ). Благодаря волнам на поверхности моря, физико-химическим процессам  [c.324]

Подход, связанный с рассмотрением вихря скорости, часто оказывается более удобным, чем решение уравнений для простейших физических переменных одно из наиболее интересных приближений состоит в определении зависящей от времени функции тока и, следовательно, поля конвективных скоростей только по вычисленному распределению вихря. Граничные условия для расчетов в некоторой выделенной области на мелкой сетке удобно определять по результатам предыдущих расчетов на более грубой сетке. В метеорологических задачах стационарные решения обычно не представляют интереса, однако они могут представлять интерес в других геофизических задачах (например, ячеечная конвекция, вызванная солнечной радиацией). Обычно в метеорологических задачах требуется по крайней мере второй порядок аппроксимации по времени. Интересной особенностью этих задач является то, что гидростатическое давление р иногда принимается за независимую переменную вместо вертикальной координаты h, которая представляется как h(p).  [c.455]

Основными преимуществами гидростатического нивелирования является его независимость от вибраций и колебаний строительных конструкций, конвекции воздушной среды, возможность одио-времетшого нивелирования нескольких точек. Однако ввиду громоздкости аштаратуры и сложности ее настройки гидростатическое нивелирование подкрановых путей не получило широкого распространения на практике. В качестве примера мы можем Тфивести лишь  [c.98]

Увеличение перегрева стенки ведет к росту числа одновременно действующих центров парообразования, что сопровождается ростом интенсивности теплообмена. Для кипения характерна очень сильная зависимость плотности теплового потока q от перегрева стенки относительно температуры насыщения это кардинально отличает теплообмен при кипении от однофазной конвекции и от конденсации. Зависимость (А Т) называют кривой кипения, или кривой Нукияма, по имени японского исследователя, впервые описавшего эту зависимость в 1935 г. Типичная кривая кипения со схематическим изображением механизма теплообмена при различных сочетаниях плотности теплового потока и перегрева стенки АТ = представлена на рис. 8.3. Пусть жидкость в обогреваемом сосуде находится при температуре насыщения, отвечающей давлению над ее уровнем. Обогреваемая поверхность, например, в виде обращенной вверх пластины с адиабатной нижней поверхностью размещена под уровнем жидкости. Дополнительное гидростатическое давление столба жидкости над нагревателем обычно составляет ничтожную долю от. По обеим координатным осям используется логарифмический масштаб.  [c.343]


Рассмотрим результаты исследований по воздействию ускорения на отдельные этапы процессов кипения. На зарождение пузырьков ускорение влияет косвенно. Отмеченное многими авторами [87—89] улучшение теплоотдачи за счет естественной конвекции с ростом ускорения приводит к тому, что кипение возникает при более высоких тепловых потоках. Увеличение ускорения приводит к возрастанию гидростатического давления и, следовательно, температуры насыщения Т , что затрудняет вскнБэние жидкости на поверхности нагрева, особенно при наличии большого градиента насыщения по высоте сосуда. При постоянной плотности теплового потока с ростом ускорения уменьшается плотность центров парообразования, а средняя частота отрыва пузырей возрастает отрывные диаметры пузырей уменьшаются. Рост пузырька на поверхности нагрева не зависит от ускорения, за исключением конечной стадии, когда он ускоряется.  [c.85]

Полу шм теперь уравнения конвекции жидкости с твердой примесью. Следуя обычным соображениям, используемым в приближении Буссинеска, будем считать, что температуры и плотности жидкости и облака частиц, а также давление жидкости мало отличаются от соответствующих значений в исходном состоянии. В качестве такового примем состояние, в котором жидкость и частицы имеют однородную постоянную температуру Т, плотности жидкости и облака частиц — соответственно постоянные р и рр О. Жидкость в исходном состоянии покоится (у = 0), а частицы оседают с постоянной скоростью у = Ту 5 определяемой законом Стокса такое оседание частиц не вызьшает движения жидкости, а приводит лишь к перенормировке гидростатического давления Ур = (р +рр) .  [c.144]

Разбирая вопрос об особенностях распространения звука в свободной атмосфере, мы познакомились с рядом явлений, вызываемых неоднородным строением и турбулентностью атмосферы. Подобно воздушной оболочке, жидкая оболочка земли — море — также не представляет собой однородной и застывшей среды. С глубиной меняется температура воды и гидростатическое давление. В первой сотне метров под водой распределение температуры сильно зависит от метеорологических условий — времени года, времени, суток, скорости ветра, облачности. Морские течения и конвекция приводят к появлению турбулентности ). Благодаря волнам на поверхности моря, физико-химическим процессам в море, а также живым организмам происходит образование пузырьков воздуха в воде, играющих, как мы увидим дальше, существенную роль при распространении ультразвука в море. Кроме того, при распространении звука в воде, как мы уже говорили, поглощение его не так велико, как в воздухе, поэтому большую роль играет на1ичие границ, отражающих звуковые волны,— поверхности моря и дна,— особенно в мелких морях.  [c.313]

КОНВЕКЦИЯ, перенос энергии токами подвижной материальной среды. Важнейший случай К.—-тепловая К. Конвекционные тепловые токи наблюдаются 1) в жидких веществах, особенно с плохой теплопроводностью, когда нагревание идет с нижних слоев (напр, в баках для кипячения с нижней топкой) 2) в газах (конвекционные токи в комнате, в атмосфере), когда нижний слой от нагревания расширяется и всплывает наверх, а на его место опускаются более тяжелые массы из верхних слоев, благодаря чему устанавливается круговой конвекционный ток. Тепловая К. играет большую роль в технике так, на К. основано устройство тдяного отопления (см.). Конвекционные токи необходимо устранять при тепловых изоляциях напр, в пустотелых конструкциях стен обязательно устраиваются между тенками поперечные перегородки в шахматном порядке в войлочных, шерстяных и т. п. изоляциях назначение волосков—затруднять движение воздуха и этим уменьшать тепловую К. Конвекционные токи необходимо принимать во внимание при устройстве вентиляции помещений. Громадное значение К. играет ив круговороте атмосферного воздуха все ветры и воздушные течения—конвекционного характера. Конвекционные токи в атмосфере возникают 1) вследствие нагревания нижних слоев воздуха поверхностью земли, нагретой в свою очередь солнечными лучами 2) вследствие нагревания нижних слоев воздуха при конденсации водяных паров, выделяющих скрытую теплоту 3) под влиянием охлаждения верхних слоев вследствие лучеиспускания. Конвекционный характер носят также тепловые и холодные течения в океанах, морях, озерах и пр. водоемах. Но здесь помимо тепловой конвекции имеет место гидростатическая, вызываемая изменением удельного веса в верхних слоях воды благодаря примеси более тяжелых загрязненных проточных вод.  [c.395]


Смотреть страницы где упоминается термин Конвекция гидростатическа : [c.280]    [c.530]    [c.313]    [c.165]   
Техническая энциклопедия Т 10 (1931) -- [ c.0 ]



ПОИСК



Конвекция



© 2025 Mash-xxl.info Реклама на сайте