Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Повреждени квазистатическое

Повреждение квазистатическое — Определение 113  [c.484]

Настоящая монография является одной из попыток среди такого рода работ подойти к проблеме разрушения, базируясь на системном подходе, лежащем на стыке механики деформируемого твердого тела, механики разрушения и физики прочности и пластичности. В книге изложены разработанные авторами физико-механические модели хрупкого, вязкого и усталостного разрушений, позволяющие анализировать повреждение материала при сложном нагружении в условиях объемного напряженного состояния. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Кроме того, в работе рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях.  [c.3]


По всей видимости, снижение е/ в зависимости от hjs можно объяснить следующей причиной. Следствием импульсного нагружения являются последующие свободные колебания сварного соединения. Очевидно, что в зоне сопряжения шва с основным металлом эти колебания за счет концентрации напряжений и деформаций могут приводить к циклическому знакопеременному упругопластическому деформированию материала. Разрушение материала в данном случае может быть связано с накоплением усталостных повреждений. Ясно, что критическая деформация, по сути являющаяся остаточной деформацией после импульсного нагружения, будет меньше, чем критическая деформация при монотонном квазистатическом нагружении. Увеличение относительной высоты усиления hjs приводит к росту инерционных сил, за счет которых в зависимости от схемы нагружения растет амплитуда и(или) количество циклов свободных колебаний сварного соединения. Роль усталостного повреждения в этом случае увеличивается, что приводит к снижению критической деформации при динамическом нагружении.  [c.45]

Уравнение (4.85) предполагает, что вся рассеянная энергия идет на повреждение. В то же время из работ [3, 147, 153, 184, 233, 267] следует, что часть ее идет на деформирование и только часть — на повреждение. Причем доля энергии, идущей на повреждение, зависит от уровня суммарной рассеянной энергии и от характера нагружения (квазистатическое, циклическое и т. д.). Таким образом, приведенные в указанных работах результаты не позволяют считать зависимость (4.85) и, следовательно, критерий (4.82) достаточно обоснованными для приме-  [c.258]

В предлагаемой методике в качестве основного механизма, контролирующего разрушение, принимается накопление повреждений при медленном квазистатическом деформировании материала, которое обусловлено процессом низкотемпературной ползучести при напряжениях выше предела текучести. С пог мощью данной методики осуществляется расчет временного ресурса конструкции при статическом нагружении в условиях действия коррозионной среды.  [c.329]

На третьем этапе проводится расчет долговечности Тр и повреждаемости D наиболее нагруженных зон коллектора в соответствии с критерием квазистатического повреждения [46, 47) с учетом воздействия коррозионной среды  [c.333]

Изучение механического поведения материалов при циклическом деформировании в условиях нормальных, повышенных и высоких температур в изотермических и неизотермических случаях нагружения. Это направление охватывает сопротивление деформированию и разрушению (по моменту образования трещины) с разработкой критериев накопления квазистатических и усталостных повреждений при однородном напряженном состоянии и уравнений, описывающих закономерности деформирования без учета и с учетом реологических свойств.  [c.4]

Для случая квазистатического (длительного статического) повреждения используется в качестве предельного состояния равенство односторонне накопленной и разрушающей деформации при простом растяжении [188], причем в первом приближении для пластичных материалов e t) = е,,. ( ) и условие квазистатического разрушения выражается равенством  [c.20]


Предельное состояние при сочетании процессов накопления усталостных и квазистатических (длительных статических) повреждений определяется линейным суммированием этих повреждений [132]  [c.21]

В зависимости от условий нагружения (уровень действующих напряжений и форма цикла), а также циклических свойств материалов к моменту разрушения накапливается та или иная доля усталостного и квазистатического повреждений, удовлетворяющих уравнению (1.2.7).  [c.21]

Предельные числа циклов на стадии образования трещин определяются на основе деформационно-кинетических критериев малоциклового и длительного циклического разрушения (уравнение (1.2.8)) линейным суммированием квазистатических и усталостных повреждений с учетом изменения циклических и односторонне накопленных деформаций по числу циклов и времени, а также изменения во времени располагаемой пластичности материала.  [c.44]

Для количественной оценки эффектов неизотермичности нагружения на процесс накопления квазистатических (длительных статических) и усталостных повреждений требуется выполнение экспериментальных программ исследований в условиях переменных температур. Необходимо прежде всего осуществление базовых испытаний для контрастных сочетаний режимов нагружения и нагрева, какими являются режимы жесткого нагружения, сопровождающиеся синфазным и противофазным нагревом—охлаждением образца (рис. 1.3.1, а — г).  [c.44]

Предполагается, что разрушение при термоусталостном нагружении обусловливается, так же как и при изотермическом длительном малоцикловом деформировании, накоплением и взаимосвязью усталостного и квазистатического (длительного статического) повреждений.  [c.49]

Базовая информация, необходимая для оценки усталостных и квазистатических повреждений при термической усталости, может быть получена при испытаниях на длительный статический разрыв и малоцикловую усталость (жесткое нагружение) соответствующей скорости деформирования и частоты в условиях заданного термического цикла.  [c.56]

Оценка сопротивления термической усталости без учета составляющей квазистатического повреждения, которая в общем повреждении может иметь величину порядка 0,5 и более, приводит к несоответствию расчетных и экспериментальных значений долговечности до двух и более раз.  [c.56]

В условиях рассматриваемого типа нагружения проявляются особенности малоцикловой усталости, заключающиеся прежде всего, как отмечено выше, в возможности накопления в процессе циклических нагружений наряду с усталостными повреждениями и квазистатических. В указанном наиболее общем случае оценка накопления повреждений может быть выполнена в деформационной форме, что является традиционным для малоцикловой ветви кривой усталости [2—8] и обосновывается в ряде исследований также и для многоцикловой области [144, 210, 211], а расчет повреждений представляется возможным осуществить на основе деформационно-кинетических критериев разрушения.  [c.57]

По характеристикам пластичности материала может быть получена предельная величина односторонне накопленной деформации ef = 0,51н(1 — с помош ью которой определяется располагаемая пластичность и доля квазистатического повреждения в условиях циклического нагружения (уравнение (1.1.12)).  [c.59]

Для случайного нагружения в режиме слежения за деформациями накопление односторонних деформаций квазистатических повреждений практически  [c.63]

Несущая способность рассматриваемых конструкций при таких условиях работы ограничена малым числом циклов (10 ) и определяется малоцикловой прочностью гофрированной оболочки. Разрушение компенсаторов, сопровождающееся прорастанием трещины в окружном направлении и нарушением герметичности оболочки, происходит преимущественно за счет накопления усталостных повреждений. Доля повреждений от действия внутреннего давления и односторонне накапливаемой деформации, как правило, не существенна. Последнее объясняется тем, что работа сильфонов как компенсирующих элементов происходит, в основном, при постоянных размахах циклических перемещений, не приводящих к развитию односторонних деформаций и накоплению квазистатического повреждения.  [c.198]

Таким образом, в случае измерения циклических деформаций в зоне выраженной концентрации нагружений при стационарном нагружении, когда характер нагружения оказывается близким к жесткому, расчет по величинам деформаций в цикле с учетом изменения с числом циклов нагружения исходного сопротивления тензорезистора по уравнениям (3.2.1) позволяет внести поправку в данные тензометрирования с целью определения действительной истории нагружения элемента конструкции. Одновременно свойство тензорезисторов увеличивать исходное сопротивление при малоцикловом нагружении используется для оценки накопления усталостных повреждений. Величиной прироста исходного сопротивления тензорезисторов, устанавливаемых в зонах концентрации, определяется степень исчерпания ресурса изделий. Вместе с тем интегральная оценка прироста сопротивления тензорезистора не позволяет выполнять покомпонентную оценку накопления усталостных и квазистатических малоцикловых повреждений, что существенно для расчета прочности, и требуется разработка и экспериментальное обоснование указанной процедуры.  [c.268]


Получаемые по данным тензометрирования величины циклических Ср и односторонне накопленных вр деформаций позволяют с использованием критериальных уравнений (1.1.10) — (1.1.12) оценить повреждение (усталостное и квазистатическое) конструкции.  [c.270]

Для случая нормальных, повышенных и высоких температур разработаны методы определения повреждений в форме деформационно-кинетических критериев малоциклового и длительного циклического нагружений. При этом усталостные повреждения определяются кинетикой пластических, или необратимых циклических деформаций, а квазистатические, или длительные статические повреждения — накоплением односторонних деформаций (циклическая анизотропия свойств, асимметрия по напряжениям, выдержкам и температурам, ползучесть), причем в обоих случаях учитывается изменение механических свойств во время циклического нагружения. Предложено, экспериментально исследовано и подтверждено условие линейного суммирования усталостных и квазистатических (длительных статических) повреждений на стадии образования трещины.  [c.274]

Обосновано использование деформационно-кинетических подходов в линейной трактовке для оценки сопротивления термической усталости. При этом базовая информация, необходимая для оценки усталостных и квазистатических повреждений, может быть получена при испытаниях на длительный статический разрыв и малоцикловую усталость с соответствующей скоростью деформирования и частотой в условиях заданного термического цикла.  [c.275]

При этом уравнение (1) описывает условие достижения предельного состояния в зоне разрушения на основе линейного суммирования компонент повреждений. В уравнениях (2) и (3) усталостное повреждение за цикл связывается с величиной полной или необратимой деформации (равной ширине петли гистерезиса), а квазистатическое — определяется односторонне накопленной деформацией, при этом суммирование повреждений производится с учетом изменения по циклам и во времени циклических и односторонне накопленных деформаций, а также исчерпания располагаемой пластичности материала.  [c.41]

Отличительной особенностью таких представлений является учет влияния на усталостное и квазистатическое (длительное статическое) повреждения как изменения предельных механических характеристик материала, так и кинетики циклических и односторонних деформаций в процессе повторного нагружения.  [c.39]

Для случая квазистатического (длительного статического) повреждения используется в качестве предельного состояния равенство односторонне накопленной и разрушающей деформаций при простом растяжении [5]  [c.40]

Рассмотрены процессы повреждения и разрушения материалов и элементов конструкций и формулировки критериев разрушения на основе подхода, включаюшего механику деформируемого твердого тела, механику разрушения и физику прочности и пластичности. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях. Основу книги составили результаты, полученные авторами.  [c.2]

При мягком нагружении циклически разупрочняющихся или стабильных металлов накапливаются пластические деформации, которые могут привести к двум типам разрушения — квазистати-ческому и усталостному. Квазистатическое связано с возрастанием остаточных деформаций до уровня, соответствующего разрушению при однократном статическом нагружении. Разрушение усталостного характера связано с накоплением -повреждений, образованием прогрессирующих трещин при существенно меньшей пластической деформации. Возможны и промежуточные формы разрушения, когда образуются трещины усталости па фоне заметных пластических деформаций.  [c.688]

Принятые в испытаниях типы режимов нагружения охватывают контрастные случаи сочетания процессов накопления квазистати-ческих и усталостных повреждений. Воспроизводились условия накопления в основном только усталостных или квазистатических повреждений и режимы, дающие возможность дозировать долю компонент накопленных повреждений, обеспечивающие либо сильное перемешивание блоков нагружения, либо весьма слабое, например, однократный переход с режима на режим. Достигнутая гибкость регулировки режимов программного нагружения позволила проверить закономерности накопления повреждений в жестких условиях резкой смены процессов.  [c.17]

Для исследований выбраны три конструкционных материала — сталь 45 и 15Х2МФ, алюминиевый сплав Д-16Т, обеспечивающие по своим циклическим свойствам получение характерных типов квазистатического, усталостного и смешанного разрушений. В деформационных терминах обоснована возможность использования практически во всех рассмотренных случаях правила линейного суммирования квазистатических ж усталостных повреждений.  [c.17]

Деформационная трактовка разрушения материалов при длительном циклическом нагружении используется и в работах [47, 48, 61]. Трактовка выполняется в форме, пригодной для оценки и усталостных, и квазистатических повреждений. Предлагается раздельно учитывать повр ежденйя от накопления односторонних пластических и знакопеременных деформаций, а также односто-роннцх и, знакоцеременных деформаций ползучести. Предполагается взаимное влияние на предельную деформационную способность материала усталостных и квазистатических повреждений указанного типа. Трактовка нуждается в уточнении способов определения компонент повреждений и достаточном экспериментальном обосновании.  [c.42]

Другой важной особенностью неизотермического нагружения является то обстоятельство, что характер поциклового изменения напряжений и деформаций, определяющий кинетику накопления усталостного и квазистатического повреждений, в значительной степени обусловлен реализующейся комбинацией процессов нагружение—разгрузка и нагрев—охлаждение. В определенных случаях разрушение в неизотермических условиях может происходить при значительно меньшем (до 4—5 раз и более) числе циклов нагружения, чем при постоянной температуре.  [c.44]

Трактовка условий достижения предельного состояния по разрушению в форме деформационно-кинетического критерия предцояагает интерпретацию экспериментальных данных в виде зависимости суммарного повреждения от числа циклов до появления трещины. При этом для условий термоусталостных испытаний, которые, как было подчеркнуто, являются в общем случае нестационарными и сопровождаются накоплением не только усталостных, но и квазистатических повреждений, выражение результатов в широко используемой в настоящее время форме, когда производится построение зависимости циклической деформации (суммарной или необратимой) от долговечности, является недостаточно корректным. На рис. 1.3.7 представлены данные термоуста-лостных испытаний. Видно, что при использовании деформаций, получаемых в первом цикле нагружения, и деформаций, соответствующих 50%-ной долговечности образца, наблюдается кажущееся снижение сопротивления термоусталостному нагружению в два-три раза по сравнению с кривой усталости материала. Указанное является следствием неучета влияния в термоусталостных испытаниях квазистатических повреждений, роль которых возрастает по мере снижения долговечности образцов.  [c.55]


Мягкое нагружение представляет собой режим испытаний, при котором возможно накопление как квазистатических, так и усталостных повреждений. Характерной особенностью исследуемого материала оказывается то обстоятельство, что при исходном нагружении в пределах упругости, когда > 1,20 1 = 0,57 Оцц, по мере набора числа циклов нагружения в мягком режиме наблюдалось раскрытие петли гистерезиса (рис. 1.4.1, б, кривые Од, 02, Од) и происходило накопление односторонних деформаций, причем при числе циклов, близком к образованию треш ины усталости, процесс усиливался (рис. 1.4.2, Жтр = 795). При этом  [c.59]

Для расчета накопленного повреждения В по результатам двухступенчатого блочного нагружения с использованием зависимости (1.1.12) необходима прежде всего запись поциклового изменения деформаций на каждом уровне блока нагружения вплоть до достижения образцом предельного состояния по моменту образования макротрещины. Дальнейшая обработка каждой из двух полученных таким образом кривых изменения деформаций в процессе испытания для каждого образца (по числу уровней в блоке) осуществляется по методике, изложенной выше для случая мягкого стационарного нагружения. Суммарное накопленное повреждение, таким образом, учитывает вклад каждой ступени блока нагружения и в соответствии с зависимостью (1.1.12) определяется с учетом усталостных и квазистатических повреждений.  [c.61]

Оценка долговечности при мягком нагруя ении выполняется с учетом усталостных и квазистатических повреждений и графически представляется зависимостью накопленного повреждений от числа циклов нагружения (рис. 5.3.4, а), либо характеризуется компонентами усталостного и квазистатического повреждений (рис. 5.3.4, б).  [c.240]

При этом предполагается, что в зонах концентрации напряжений, где, как правило, происходят малоцикловые разрушения, накапливаются в основном усталостные повреждения в результате действия знакопеременных упругопластических деформаций. Вместе с тем в эксплуатационных условиях в результате работы конструкции на нестационарных режимах, в том числе при наличии перегрузок, возможно накопление односторонних деформаций, определяювцих степень квазистатического повреждения и влияю-ш их на достижение предельных состояний по разрушению. Для обоснования методологии учета накопления конструкцией (наряду с усталостными) квазистатических повреждений по результатам тензометрических измерений требуется решение прежде всего вопросов расшифровки показаний датчиков с целью воспроизведения истории нагруженности в максимально напряженных местах конструкции и оценки малоциклового повреждения для эксплуатационного контроля по состоянию. Малоцикловое повреждение может в общем случае оцениваться по результатам измерений, выполненных обычными тензорезисторами, но с расширенным диапазоном регистрируемых деформаций (до величин порядка нескольких процентов), характерных для малоцикловой области нагружений. Исследование [20] выполнялось в Московском инженерно-строительном институте и Институте машиноведения на базе разработанных в лаборатории автоматизации экспериментальных исследований МИСИ специальных малобазных тен-зорезисторов больших циклических деформаций. Аппаратура и методика эксперимента подробно описаны в [229]. На серийной испытательной установке УМЭ-10Т с тензометрическим измерением усилий и деформаций, а также крупномасштабным диаграммным прибором осуществлялось циклическое нагружение цилиндрических гладких образцов по заданному и, в частности, нестационарному режиму. Одновременно соответствующей автоматической аппаратурой производилась регистрация истории нагружения с помощью цепочек малобазных тензорезисторов, наклеенных на испытываемый образец. Сопоставление показаний тензорезисторов с действительной историей нагружения и деформирования образца, регистрировавшихся соответствующими системами испытательной установки УМЭ-10Т, давало возможность определить метрологические характеристики датчиков и особенности их повреждения в условиях малоциклового нагружения за пределами упругости. Наиболее существенными особенностями работы тензорезисторов в условиях малоциклового нагружения оказываются изменение коэффициента тензочувствительности при высоких уровнях исходной деформации и в процессе набора циклов нагружения, уход нуля тензорезисторов и их разрушение через определенное для каждого уровня размаха деформаций число циклов.  [c.266]

Бандин О. Л., Гусенков А. П., Шаршуков Г. К. Основы метода оценки усталостного и квазистатического малоциклового повреждения конструкций с использованием тензорезисторов.— Машиноведение, 1977, № 5.  [c.279]

Даунис М. А. Накопление усталостных и квазистатических повреждений при нестационарном мапоцикловом нагружении.— Матер. Всесоюз. рабочего симпоз. по вопросам малоцикловой усталости. Каунас, 1971.  [c.281]


Смотреть страницы где упоминается термин Повреждени квазистатическое : [c.95]    [c.7]    [c.19]    [c.60]    [c.64]    [c.239]    [c.265]    [c.270]    [c.413]    [c.17]    [c.29]   
Сопротивление материалов усталостному и хрупкому разрушению (1975) -- [ c.79 ]



ПОИСК



Основы метода оценки усталостного и квазистатического малоциклового повреждения конструкций с использованием тензорезисторов

Повреждени

Повреждение

Повреждение квазистатическое

Повреждение квазистатическое

Повреждение квазистатическое накопленное — Влияние времени демирования 210, 211 — Определение

Повреждение квазистатическое относительное усталостное

Повреждение квазистатическое относительное — Определение

Повреждение квазистатическое статическое длительное — Определение

Повреждение квазистатическое усталостное — Накопление 157 Определение

Повреждение квазистатическое — Определение



© 2025 Mash-xxl.info Реклама на сайте