Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы лазерои

Сформулируем основные требования, предъявляемые к матрице активного материала лазера. Прежде всего матрица должна быть прозрачной, т. е. она не должна иметь энергетических уровней, переходы меладу которыми лежат в области длин волн генерации или  [c.66]

Условия работы активного материала лазера также накладывают определенные требования на свойства матрицы. В первую очередь она должна обладать высокой теплопроводностью. Твердотельные лазеры на диэлектрических монокристаллах имеют весьма небольшой кпд (порядка 1—5 %) и, следовательно, весьма значительная часть энергии накачки идет на нагрев активной среды.. Если активная среда не может эффективно рассеять эту энергию, то неизбежен выход из строя всей системы. Наиболее приемлемыми свойствами в этом отношении обладают монокристаллы сапфира (рубина) и именно этим фактом объясняется их использование, несмотря на трехуровневую схему генерации.  [c.67]


Луч лазера имеет значительно меньшее затухание в воздухе нежели электронный пучок. Кроме того, энергия, заключенная в одном импульсе лазера, значительно больше, чем в импульсе электронного луча, поэтому при обработке материала лазером нет необходимости помещать обрабатываемую деталь и инструмент (луч ОКГ) в вакуумную камеру. Однако необходимо отметить, что частота следования импульсов излучения в лазере ограничена вследствие резкого увеличения температуры излучателя. Возможно, это ограничение будет преодолено в ближайшем будущем в результате разработки полупроводниковых лазеров.  [c.316]

Говоря о действии луча на вещество, мы имели в виду концентрацию световой мощности лишь в пространстве (ведь интенсивность луча есть мощность, отнесенная к единице площади его сечения). Надо, однако, учитывать и концентрацию мощности во времени. Ее можно регулировать, изменяя длительность одиночных лазерных импульсов или частоту следования импульсов (если генерируется последовательность импульсов). Предположим, что интенсивность достаточна для того, чтобы металл не только плавился, но и кипел при этом излучение лазера представляет собой одиночные импульсы. В данном случае в материале поглощается значительная световая энергия за очень короткое время. За такое время поверхность расплава не успевает переместиться в глубь материала в результате еще до того, как расплавится сколько-нибудь заметная масса вещества, начнется его интенсивное испарение. Иными словами, основная часть поглощаемая веществом световой энергии лазерного импульса расходуется в подобных условиях не на плавление, а на испарение.  [c.296]

При применении лазерной сварки прочность сварных соединений (ширина шва составляет несколько миллиметров) достигает уровня прочности свариваемого материала. Осуществляется автоматическая лазерная сварка кузовов автомобилей, сварка листов титана и алюминия на судостроительных верфях, сварка газопроводов. На ПО ЗИЛ при помощи лазеров на СОг про-  [c.297]

Для повышения твердости поверхности применяют также лазерное легирование. Легирующие присадки в виде порошка предварительно наносят на обрабатываемую поверхность. При облучении лазером поверхности заготовки происходит плавление и взаимное перемешивание порошка и материала заготовки в пределах тонкого поверхностного слоя.  [c.298]

Лазерную резку материалов осуществляют как в импульсном, так и в непрерывном режиме. При резке в импульсном режиме непрерывный рез получается в результате наложения следующих друг за другом отверстий. Наиболее широкое применение получила резка тонкопленочных пассивных элементов интегральных схем, например, с целью точной подгонки значений их сопротивления или емкости. Для этого применяют импульсные лазеры на алюмо-иттриевом гранате с модуляцией дробности, лазеры на углекислом газе. Импульсный характер обработки обеспечивает минимальную глубину прогрева материала и исключает повреждение подложки, на которую нанесена пленка. Лазерные установки различных типов позволяют вести обработку при следующих режимах энергия излучения 0,1. .. 1 МДж, длительность импульса 0,01. .. 100 мкс, плотность потока излучения до 100 мВт/см, частота повторения импульсов 100. .. 5000 импульсов в 1 G. В сочетании с автоматическими управляющими системами лазерные установки для подгонки резисторов обеспечивают производительность более 5 тысяч операций за 1 ч. Импульсные лазеры на алюмо-иттриевом гранате применяют также  [c.299]


Лазеры непрерывного действия на Oj применяют для газолазерной резки, при которой в зону воздействия лазерного луча подается струя газа. Г аз выбирают в зависимости от вида обрабатываемого материала. При резке дерева, фанеры, пластиков, бумаги, картона, текстильных материалов в зону обработки подается воздух или инертный газ, которые охлаждают края реза и препятствуют сгоранию материала и расширению реза. При резке большинства металлов, стекла, керамики струя газа выдувает из зоны воздействия луча расплавленный материал, что позволяет получать поверхности с малой шероховатостью и обеспечивает высокую точность реза. При резке железа, малоуглеродистых сталей и титана в зону нагрева подается струя кислорода.  [c.300]

Импульсные твердотельные лазеры применяют для сварки малоразмерных деталей в микроэлектронике, приборостроении, где важно получать малоразмерные швы с минимальным разогревом окружающего зону сварки материала. Сварка может вестись как отдельными точками, так и герметичными швами при последовательном наложении точек с их перекрытием.  [c.127]

Для удаления корректирующих масс из тела ротора, изготовленного из любого материала, применяется балансировка с использованием лазера [8, т. 6]. Этот способ стал возможным в связи с появлением и разработкой мощных оптических квантовых генераторов. Для повышения производительности применен лазер непрерывного действия и разработана оптическая система, обеспечивающая синхронное следование луча лазера за тяжелой точкой ротора в плоскости коррекции. Практически это осуществлено, например, в автоматическом лазерном балансировочном станке ЛБС-3, принципиальная схема которого приведена на рис. 6.20. Балансируемый ротор Р опирается на неподвижные чувствительные опоры Л и S и приводится во вращение двигателем Д. От него же подается механический сигнал и в блок УБ, приводящий в синхронное с ротором вращение полый щпиндель с оптической призмой П. Сигналы опорных датчиков (t и р перерабатываются в решающем блоке РБ в фазирующий импульс, также посылаемый в управляющий блок УБ, который обеспечивает требуемое фазовое положение призмы П относительно ротора Р. Луч из оптического квантового генератора ОКГ проходит через полый шпиндель и, отражаясь от вращающей-  [c.224]

Настоящее издание книги, пересмотренное и дополненное группой учеников и бывших сотрудников Г. С. Ландсберга, наряду с частично модернизированной трактовкой прежнего материала, содержит изложение физических основ новых направлений оптики, сложившихся за последние годы. Подавляющая часть материала, введенного в книгу, непосредственно или косвенно связана с созданием оптических квантовых генераторов (лазеров).  [c.9]

Импульс светового излучения большой интенсивности вырабатывается лазером в виде параллельного пучка лучей (рис. 176). Оптическая система О фокусирует на поверхность отливки D излучение лазера в пятно требуемых размеров с1. Плотность мощности излучения, падающего на поверхность, достаточно высока, чтобы вызвать плавление огнеупорного материала или сварку отливки и детали.  [c.360]

Первый полупроводниковый лазер был выполнен на арсениде галлия (ОаАз) Ходом в 1962 г. Этот лазер обладал очень большой вероятностью излучательной рекомбинации. Лазер на арсениде галлия (Я = 0,84 мкм) относится к так называемым инжекционным лазерам на р —п-переходе. Обычно плавные р-н-переходы создают путем диффузии акцепторных примесей (цинк, кадмий и др.) в материал, легированный донорными примесями (теллур, селен и др.).  [c.297]

Стекло, активированное неодимом, — наиболее распространенный и широко применяемый материал для твердотельных лазеров. Отечественная промышленность и зарубежные фирмы выпускают более 50 марок активированных неодимом стекол.  [c.943]

Твердотельная квантовая электроника базируется на монокристаллах сложных оксидов, содержащих элементы редкоземельной группы. При рассмотрении основных требований, предъявляемых к твердотельным лазерам, в книге одновременно обосновывается выбор оптимального состава материала их активной среды.  [c.4]

Исполнительные органы автоматического балансировочного станка действуют по сигналам, поступающим от измерительного устройства, и служат для удаления части материала ротора сверлением или фрезерованием после его остановки или же мгновенной наплавкой материала без остановки ротора (взрыв проволочек в магнитном поле). Без остановки ротора возможно также устранение дисбаланса с помощью лазера, испаряющего часть материала.  [c.130]

В последние годы наблюдается бурное развитие волоконно-оп-тических линий связи (ВОЛС), важнейшим элементом которых являются волоконно-оптические кабели (ВОК). Узкий световой лазерный луч. модулированный соответствующим образом, может распространяться на большие расстояния и передавать огромный объем информации. Использование его для передачи в атмосфере затруднено из-за больших потерь световой энергии, из-за поглощения и рассеяния, обусловленных загрязнением передающей среды (частички пыли, сажи, газы, капли влаги). По мере развития производства оптически чистых стекол и стеклянных нитей на их основе появилась возможность передавать световую энергию по ВОК, основным элементом которых является ОВ (оптическое волокно). В качестве материала для ОВ используются стекла на основе чистого кварца. Луч света, введенный от лазера в ОВ, распространяется вдоль его оси, если показатель преломления в центре волокна больше, чем у его внешней поверхности. Это достигается, например, путем изготовления двухслойного ОВ, центральная часть которого (сердечник) за счет легирующих добавок имеет показатель преломления, немного больший наружного слоя ОВ (светоотражающая оболочка).  [c.265]


Для трехмерных задач применяется и другой метод, а именно метод рассеянного света . Этот метод является неразрушающим, и в нем не требуется замораживание напряжений. Опыты можно проводить при комнатной температуре, при которой свойства материала моделей, такие, как коэффициент Пуассона, близки к свойствам моделируемых материалов. Когда интенсивный монохроматический поляризованный пучок, испускаемый, например, лазером, попадает в прозрачную напряженную среду, возникает картина полос в рассеянном свете в направлении, перпендикулярном первоначальному лучу.  [c.499]

При использовании различных типов лазеров для обработки излучением следует учитывать, что коэффициент отражения материала, а следовательно, и доля поглощенной световой энергии зависят от длины волны лазерного излучения чем короче длина волны излучения ОКГ, тем ниже отражательная способность металла и выше доля поглощенной световой энергии. Из табл. 1 следует, что большинство металлов плохо поглощают излучение СОз-лазеров, имеющее длину волны 10,6 мкм.  [c.7]

Температурный режим нагрева материала определяется плотностью мощности излучения лазера. При низкой плотности мощности (примерно до 10 —10 Вт/см ) происходит нагрев материала без его плавления или испарения. С повышением значения этой величины примерно до 10 —10 Вт/см материал плавится, а при плотности мощности излучения, превышающей 10 —10 Вт/см , материал разрушается вследствие испарения.  [c.8]

Рассмотренные зависимости описывают температурное состояние в зоне воздействия лазерного излучения при плотностях мощности, приводящих лишь к нагреву или плавлению материала, но не к испарению или другим видам разрушения. Режим работы лазера, при котором происходит испарение металла, используется для прошивки отверстий, резки материала, балансировки и т. п. [8,25,41].  [c.11]

На базе лазера ЛГ-22 создана технологическая установка Катод-клистрон , предназначенная для резки стеклянных трубок. В другой установке, разработанной для этих же целей, используется отпаянный лазер типа ЛГ-17, снабженный системой водяного охлаждения с расходом воды до 1,0 м /мин при давлении 1,5 атм. Мощность генерируемого излучения 30 Вт. Потребляемая мощность — до 2 кВт. Габаритные размеры установки 3350 X 1410 X 500 мм [5]. Эти установки могут быть успешно использованы для повышения эксплуатационных характеристик поверхностных слоев материала.  [c.42]

С этой точки зрения особый интерес представляет проект комплексной производственной системы с широким использованием лазерного излучения для выполнения технологических процессов, который в настоящее время разрабатывается рядом фирм и университетов Японии [76]. Проектом предусмотрено наличие в системе лазерной станции, которая генерирует мощное лазерное излучение, направляемое по соответствующим каналам к различным рабочим местам, на которых оно используется для резки материала, прошивки отверстий, упрочнения, локального легирования материала, измерений и т. п. В системе предусмотрено использование лазеров мощностью до 20 кВт и выше. В указанном производственном комплексе сочетаются традиционные методы обработки с новейшими лазерными методами, широко используется вычислительная техника и различные автоматические устройства. Этот комплекс отличается от существующих типов предприятий высокой эффективностью, снижением удельного веса трудоемких операций, возможностью быстрого осуществления перестройки производственной системы на выпуск нового вида изделий, снижением себестоимости продукции. На рис. 32 показан эскиз основных элементов предлагаемой комплексной производственной системы с широким использованием лазерного излучения для технологических целей.  [c.53]

Эффективность процесса обработки излучением СОг-лазера зависит от поглощательной способности материала на длине волны К = 10,6 мкм. Как было показано выше (см. с. 8), большинство чистых металлов обладают очень низкой поглощательной способностью при комнатной температуре и при малых потоках излучения.  [c.88]

Результаты измерения микротвердости показали, что ЗТВ в алюминие, обработанном непрерывным излучением СО),-лазера, состоит из трех областей (рис. 73), в которых твердость отличается от твердости основного материала. Основная и наибольшая часть  [c.95]

Материал лазера Режим работы Дли- на ВОЛ- НЫ, мкм Максимальная частота слсдоиа-ни)1 импульсов,, Гц Длительность им-1[ульсои, мс Пиковая выходная мощность, кВт Энергия в импульсе, Дж Энер- гия кванта н.члу- чения, эВ  [c.167]

Таким образом, Шавлов и Таунс установили критерии, которым должна удовлетворять люминесцентная система, для того чтобы она могла служить в качестве лазерного материала. Во-первых, испущенный свет должен ограничиваться несколькими полосами спектра идеальный случай — одиночная узкая полоса, или линия, высокой интенсивности. Если полоса слишком широка, фотоны в лазерной полости будут размазываться по широкому интервалу энергий и поэтому будут менее эффективны для вынужденного излучения. Во-вторых, эффективность превращения энергии должна быть высокой. Например, если возбужденные атомы не генерируют достаточно фотонов, а вместо этого тратят анергию в виде тепла, лавинный процесс никогда не начнется. Наконец, необходимость свести потерю фотонов к минимуму требует и высоких оптических качеств материала лазера, и хорошей центровки отражающих зеркал.  [c.45]

Лазерный луч можно сфокусировать и так. что он будет вызывать интенснпиый нагрев. Например, с помощью лннзы с фокусным расстоянием 1 см луч можно сфокусировать и пятно, называемое фокальным, так как оно находится в фокусе диаметром 0,01 см. т. е. площадью н 0,0001 см. Хотя вспышка лазера н кратковременна, ее достаточно для расплавления н испарения освещенной части любого материала, будь то металл, камень или керамика.  [c.295]

Обработка материалов лазерным луч м. Направим на поверхность какого-то материала, например металла, луч мощного лазера. Вообразим, что интенсивность излучения постепенно растет (за счет увеличения мощности лазера или за счет фокусирования излучения). Когда интенсивность излучения достигнет необходимого значения, начнется плавление металла. Вблизи гюверхности, непосредственно под световым пятном, возникает область жидкого (расплавленного) металла. Поверхность, отграничивающая эту область от твердого металла (ее называют поверхностью расплава), постепенно перемещается в глубь материала по мере гюглощення им световой энергии. При этом площадь поверхности расплава увеличивается и, следовательно, теплота начинает более интенсивно проникать в глубь материала за счет теплопроводности. В результате устанавливается поверхность расплава (рис. 18.3, а).  [c.295]

Получение отверстий лазером возможно в любых материалах. Как правило, для этой цели используют импульсный метод. Производительность достигается при получении отверстий за один импульс с больиюй энергией (до 30 Дж). При этом основная масса материала удаляется из отверстия в расплавленном состоянии под давлением пара, образовавшегося в результате испарения относительно небольшой части вещества. Однако точность обработки одноимлульсным методом невысокая (10. .. 20 размера диаметра), Максимальная точность (1. .. 5 %) и управляемость процессом достигается при воздействии на материал серии импульсов (многоимпульсный метод) с относительно небольшой энергией (обычно 0,1. .. 0,3 Дж) и малой длительностью (0,1 мс н менее). Возможно получение сквозных и глухих отверстий с различными формами поперечного (круглые, треугольные и т. д.) н продольного (цилиндрические, конические и другие) сечений. Освоено получение отверстий диаметром 0,003. .. 1 мм при отношении глубины к диаметру 0,5 10. Шероховатость поверхности стенок отверстий в зависимости от режима обработки и свойств материала достигает/ а — 0,40. .. 0,10 мкм, а глубина структурно измененного, или дефектного, слоя составляет 1. .. 100 мкм. Производительность лазерных установок при получении отверстий обычно 60. .. 240 отверстии в 1 мин. Наиболее эффективно применение лазера для труднообрабатываемых другими методами материалов (алмаз, рубин, керамика и т. д.), получение отверстий диаметром мепее 100 мкм в металлах, или под углом к поверхности. Получение отверстий лазерным лучом нашло особенно широкое применение в производстве рубиновых часовых камней и алмазных волок. Например, успешно получают алмазные волки на установке Квант-9 с лазером на стекле с примесью неодима. Производительность труда на этой операции значительно увеличилась по сравнению с ранее применявшимися методами.  [c.300]


СОг-лааера, генерирующих на длинах волн 1,06 и 10,6 мкм соответственно. Вспомогательный маломощный ИАГ М(1-лазер с пассивной модуляцией добротности кристаллом LiF. Fa за счет коротких мощных импульсов, длительность которых 120 не, пиковая мощность 30 кВт при средней мощности 30 Вт удаляет поверхностный окисный слой и создает затравочную зону разрушения. Основной непрерывный СОг лазер излучением мощностью до 500 Вт осуществляет процесс обработки. Наличие затравочной зоны разрушения резко увеличивает поглощательную способность обрабатываемого материала на длине волны основного излучения и повышает эффективность использования энергии СОг-лазера.  [c.157]

Регистрация голограммы осуществляется по схеме, приведенной на рис. 28. Луч от имнулнсного лазера 2/ проходит через зepкaJ la 22, 24 и объектив 23, который расширяет луч в 2 раза светоделитель 19 разделяет пучок света на опорный луч, который проходит через систему спаренных зеркал /7, Я. 20, блок светофильтров 6, линзу 4, зеркало / и объектный луч, который проходит через светоделитель 9, объектив //, зеркало 8, сферическое зерк 1ло 9, а затем падает на исследуемый объект 5. Наконец опорный и объектный лучи попадают па фоточувстви-тельный материал 7. Спаренные зеркала /2 и 13 могут перемещаться (положение /2 и /, ), что позволяет изменять путь опорного луча и тем самым удается привести в соответствие пути опорного и объектного лучей.  [c.76]

Для эффективной работы активатор должен иметь широкую полосу или группу интенсивных полос поглощения, соответствующих переходам на уровни, лежащие выше метастабильного уровня. Причем вероятность безызлучательных переходов с этих уровней на ме-тастабильный уровень должна быть больше, чем на основной. Выполнение этого требования позволяет значительно увеличить кпд лазера. В спектрах поглощения активного материала должны отсутствовать линии поглощения на длине волны генерации лазера, поскольку это сделает эффект генерации вынужденного излучения неэффективным.  [c.66]

Имеется ряд работ, посвященных исследованию реакции тела из композиционного материала на кратковременно действующие или импульсные силы. В уже упоминавшейся работе Пекка и Гартмана [134] рассмотрено воздействие импульса на слоистое полупространство, вызывающего сжимающие напряжения, параллельные слоям. Сви [169, 1701 исследовал слоистое полупространство, подверженное импульсному нагреву (например, с помощью лазера), при этом учитывал связанные термоупругие эффекты. В этой работе использовалась приближенная модель среды, предложенная Саном и др. [167]. В другой работе Сви и Виттера [171 ] применили эту модель для решения задачи о действии импульса давления на полуплоскость с косыми слоями, они исследовали влияние угла наклона"слоев и дисперсию напряжений.  [c.321]

Были проведены также эксперименты [11] по введению в локальные участки поверхности быстрорежущей стали Р18 легирующих элементов (углерода, смеси компонентов твердых сплавов ВКЗ, ВКб, Т15К6) с помощью квазистационарного излучения рубинового лазера. На основании рентгеноструктурного анализа установлено, что изменение параметров решетки матричного материала происходит в результате влияния легирующих элементов, а также растворения в нем карбидов. При легировании углеродом содержание его в исходном материале увеличилось до 3,3%, а при введении порошкообразной смеси компонентов твердого сплава ВКЗ содержание вольфрама возросло в 1,7 раза.  [c.26]


Смотреть страницы где упоминается термин Материалы лазерои : [c.454]    [c.455]    [c.107]    [c.169]    [c.392]    [c.297]    [c.123]    [c.225]    [c.97]    [c.128]    [c.157]    [c.98]    [c.80]    [c.87]    [c.90]   
Справочник работника механического цеха Издание 2 (1984) -- [ c.63 , c.64 ]



ПОИСК



Активные материалы твердотельных лазеров

Лазер

Лазер — инструмент для сварки и обработки материалов

Лазеры в системах неразрушающего контроля качества материалов и изделий

Материалы для жидкостных лазеров

Материалы для твердотельных лазеров

ОГС-лазеров в ДГС-лазерах

Упрочнение материалов непрерывным излучением СО 2-лазеров



© 2025 Mash-xxl.info Реклама на сайте