Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

109— III круглые, обтекаемые сверхзвуковым потоком газа

Проблема снижения донного сопротивления движущихся тел актуальна в связи с тем, что его величина для большого класса летательных аппаратов составляет 25-30% общего сопротивления. В последние десятилетия ведется активный поиск способов его уменьшения как за счет совершенствования формы летательных аппаратов, так и за счет организации на различных участках его поверхности процессов, приводящих к изменению условий обтекания и, следовательно, аэродинамических характеристик. Одним из перспективных способов снижения донного сопротивления летательных аппаратов является тепломассопровод вблизи донного среза [1, 2]. В [3-5] изучено влияние тепломассоподвода на донное давление осесимметричных тел за счет вдува продуктов сгорания пиротехнических составов в ближний след. При вдуве продуктов сгорания пиротехнических составов через круглое отверстие в донном торце величина прироста донного давления возрастает с увеличением расхода вдуваемого газа до некоторого максимального значения и падает с уменьшением числа Маха. Экспериментально доказано, что в ближнем следе тела вращения, обтекаемого сверхзвуковым потоком (1.15 < Л/ < 3.0), существуют две области (I и III) (фиг. 1), вдув продуктов сгорания пиротехнических составов в которые более эффективен, чем при использовании традиционных схем снижения донного сопротивления, например вдуве инертных газов или реагирующих продуктов сгорания через отверстия в донном торце. Область I расположена вблизи донного среза, область 11 (фиг. 1) - вверх по потоку от области присоединения оторвавшегося пограничного слоя. Воздействие тепломассоподвода на эти области приблизительно одинаково и приводит к повышению донного давления до значения, близкого к статическому давлению в набегающем потоке. Результаты более ранних исследований по данной проблеме отражены в [6, 7], а также в работах обзорного характера [8,9].  [c.158]


Другие задачи. Сводка результатов. Пластинки, бесконечные в направлении, перпендикулярном направлению потока, рассмотрены в работе [88] с использованием точных формул теории линеаризированного потенциального сверхзвукового течения. На основе поршневой теории и теории Аккерета эти пластинки рассмотрены в статьях (6, 36, 47, 48, 68, 81 ]. Исследование прямоугольных пластинок с различным опира-нием сторон описано во многих работах. Так, пластинка, защемленная по контуру, рассмотрена в работе [40] с применением метода Галеркина и поршневой теории. В качестве аппроксимирующих функций использованы балочные функции , функции Игути и квазиполная система тригонометрических функций. В той же работе рассмотрены различные комбинации заделки и шарнирного опирания. Точное решение для пластинки, опертой по кромкам, которые параллельны потоку, и свободной по двум другим кромкам, дано на основе поршневой теории в статье [49. Двухпролетная неразрезная пластинка рассмотрена в статьях [44, 45. Сопоставление результатов, которое для этой задачи дают различные аэродинамические теории, приведено в статье [34]. Круглые и эллиптические пластинки описаны в работе [80]. В статьях [I, 2, 3, 22, 75] рассмотрены ортотропные и трехслойные пластины, а в статьях [38, 89] — пластины, обтекаемые проводящим газом.  [c.486]


Смотреть страницы где упоминается термин 109— III круглые, обтекаемые сверхзвуковым потоком газа : [c.559]    [c.559]    [c.339]    [c.486]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.0 ]



ПОИСК



Л <иер сверхзвуковой

Напряжения круглые, обтекаемые сверхзвуковым потоком газа

Поток сверхзвуковой



© 2025 Mash-xxl.info Реклама на сайте