Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

95 — Уравнения определимых

Система векторных уравнений определима, если число уравнений равно числу неизвестных, умноженному на 2. Наша система содержит два векторных уравнения и четыре неизвестных.  [c.46]

Переходим к рассмотрению вопроса об определении реакций в кинематических парах групп, в состав которых входят высшие пары. Из уравнения (13.1) следует, что статическая определимость этих групп удовлетворяется, если, например, число звеньев п равно п = , число пар V класса равно = 1 и число р4 пар IV класса также равно р4 = 1. Эта группа показана на рис. 13.10, а. Звено 2 входит во вращательную пару В со звеном /ив высшую пару Е со звеном 4, выполненную в виде двух соприкасающихся кривых р — р я q — q. Находим на нормали п — п, проведенной через точку Е, центры кривизны С и D соприкасающихся кривых р — р а q — q а вводим заменяющее звено 3. Тогда имеем группу П класса B D первого вида, аналогичную группе, показанной на рис. 13.6, а. Пусть звено 2 нагружено силой Fa и парой с моментом М3 (рис. 13.10, а). Реакция F31 может быть представлена как сумма двух составляющих  [c.256]


При силовом расчете зубчатых колес можно не производить замены высших пар IV класса цепями с парами V класса, а рассматривать равновесие колес, образующих статически определимые системы. Такой статически определимой системой является колесо 2 (рис. 13.20), на которое действует внешний момент М2, реакция входного колеса на выходное колесо 2 и реакция F20 стойки О на колесо /. Из уравнения моментов всех сил, действующих на колесо 2, относительно неподвижной точки В имеем / 21 2 os а М2 = О, откуда определяем реакцию F i-  [c.269]

Реологическое поведение несжимаемых ньютоновских жидкостей полностью определяется величиной единственного параметра — вязкости. Для заданного материала вязкость является функцией только температуры. Экспериментальное определение-вязкости состоит в измерении некоторой легко определимой величины, которая единственным образом может быть связана с вязкостью при помощи соотношения, получаемого теоретически из решения уравнения движения. Например, градиент давления A/ /L в осевом направлении для прямолинейного течения в длинной круглой трубе выражается законом Хагена — Пуазейля  [c.167]

Кинематическая цепь является статически определимой, если число уравнений равновесия равно числу неизвестных параметров 3 = 2рэ, откуда Ps = V2 -  [c.141]

Составляя уравнения статики и сопоставляя количество этих уравнений с числом неизвестных, устанавливают степень статической неопределимости системы. Отбросив лишние связи, заменяют их лишними неизвестными, тем самым превращая заданную систему в статически определимую, именуемую основной системой. Для определения лишних неизвестных составляют условия деформации системы, смысл которой заключается в том, что основная  [c.141]

Как известно, для плоской системы сил можно составить три уравнения статики для определения неизвестных реакций. Поэтому балка будет статически определимой, если число неизвестных опорных реакций не превышает трех в противном случае балка статически неопределима. Очевидно, что балки, изображенные на рис. 49 и 51, статически определимы.  [c.46]

Рассмотрим произвольную статически неопределимую систему (рис. 391, а), усилия в элементах которой только из уравнений равновесия определить нельзя. Так, опорные закрепления изображенной балки дают шесть реакций, а уравнений равновесия для произвольной плоской системы сил можно составить только три. Превратим систему в статически определимую, удалив соответствующее число связей. В данном примере (рис. 391, б) отброшены три связи— шарнирно-подвижные опоры Б, С и D. Действие отброшенных связей заменим соответствующими реакциями Xt, Х , и т. д.,  [c.392]

На рис. 3, б и 3, е представлены допустимые очертания. После того как из уравнений равновесия определены усилия в стержнях этих статически определимых ферм, площади попе-  [c.91]

Если число неизвестных усилий равно числу уравнений равновесия, задача называется статически определимой, если же число неизвестных усилий больше числа уравнений равновесия — статически неопределимой.  [c.17]

Если опорные реакции могут быть найдены из одних уравнений статики, то балки называют статически определимыми. Если же число неизвестных опорных реакций больше, чем число  [c.133]


Полученную таким образом статически определимую систему называют основной системой. Чтобы основная система не отличалась от заданной, необходимо потребовать, чтобы в основной системе перемещения сечений в местах удаленных связей по направлению приложенных здесь неизвестных реакций равнялись нулю. Эти уравнения, выражающие условия совместимости перемещений основной системы со связями, наложенными на данную статически неопределимую систему, и дадут возможность решить поставленную задачу.  [c.198]

Из этого уравнения и определяем Х — / д1. После этого эпюры М (рис. VII.25, в) и поперечной силы Q (рис. VII.25, г) строятся, как в статически определимой балке.  [c.198]

Задачи, в которых число неизвестных реакций связей равно числу уравнений равновесия, содержащих эти реакции, называются статически определенными, а системы тел (конструкции), для которых это имеет место — статически определимыми.  [c.56]

Например, подвеска, состоящая из двух тросов (рис. 65, а), будет статически определимой, так как здесь две неизвестные реакции Tj и Гз войдут в два уравнения равновесия (12) плоской системы сходящихся сил. Подвеска же, состоящая из трех лежащих в одной плоскости тросов (рис. 65, б), будет статически неопределимой, так как в ней число неизвестных реакций равно трем (Tj, Tj, Та), а уравнений равновесия по-прежнему только два.  [c.56]

Аналогично, горизонтальная балка, лежащая на двух опорах (рис. 66, а), будет статически определимой, так как и здесь две неизвестные реакции и V, входят в два уравнения равновесия (33) плоской системы параллельных сил. Такая же балка на трех опорах (рис. 66, б) будет статически неопределимой.  [c.56]

Рассмотрим еще арку, изображенную на рис. 67, а, где связями являются неподвижная шарнирная опора в точке А и шарнирная опора на катках в точке В. Такая арка будет статически определимой, поскольку здесь три неизвестные акции Хд, Уу1, Nq войдут в три уравнения равновесия (29) произвольной плоской  [c.57]

Однако трехшарнирная арка, изображенная на рис. 61, будет статически определимой, так как, расчленив ее в шарнире С на две части, мы введем ещё две реакции Хс, Кр шарнира и неизвестных реакций станет шесть, но и уравнений равновесия тоже шесть (по три для каждой части). С аркой, изображенной на рис. 67,6,  [c.57]

После того как силовой расчет всех структурных групп проделан, подвижное звено / первичного механизма (рис. 5.4,6) получает статическую определимость. При этом необходимо совершенно четко отметить, что если подвижное звено совершает вращательное движение, то вовсе не обязательно принимать его равномерным. Более того, если искусственно задавать вращение без углового ускорения, то решение уравнения моментов, составленного для по,движного звена первичного механизма, во многих случаях может оказаться далеким от истинного даже при вращении с весьма малым коэффициентом неравномерности, а в иных случаях и попросту абсурдным.  [c.184]

Основные положения силового расчета с учетом трения такие же, как и расчета без учета трения (см. 5.1). Это объясняется тем, что согласно анализу действия сил в кинематических парах, сделанному в 7.2, наличие трения не изменяет числа неизвестных в кинематических парах. Следовательно, структурные группы Ассура и при учете трения сохраняют свою статическую определимость. Поэтому силовой расчет проводится по структурным группам с использованием уравнений кинетостатики (5.1) —(5.3), в которые должны быть включены силы трения и моменты трения. Последнее обстоятельство, однако, в большинстве случаев очень сильно усложняет вычисления. Чтобы снизить их сложность, И. И Артоболевский предложил применить метод последовательных приближений. Покажем, как выполняется силовой расчет этим методом на конкретном примере кривошипно-ползунного механизма (см. рис. 5.8).  [c.235]

Чтобы задача была статически определима, число неизвестных реакций должно быть не больше трех, так как при равновесии твердого тела под действием плоской системы сил в общем случае можно составить три уравнения равновесия [уравнения  [c.49]

Так как направление реакции в каждом из трех шарниров А, В С неизвестно, то при решении задачи о равновесии трехшарнирной арки каждую из этих реакции нужно разложить на две составляющие (по координатным осям х и у). Следовательно, всего будем иметь шесть неизвестных реакций, которые можно найти из шести уравнений равновесия. Таким образом, задача о равновесии трехшарнирной арки является статически определимой.  [c.65]

Ферма называется статически определимой, если уси.тия во всех стержнях фермы, нагруженной в шарнирах, можно определить при помощи уравнений равновесия.  [c.142]

Уравнений равновесия — три, следовательно, статически определимой является такая пространственная система сходящихся сил, в которой неизвестных сил не более трех.  [c.157]

Для пространственной системы параллельных сил можно составить лишь три уравнения равновесия, поэтому, чтобы задача была статически определимой, в ней должно содержаться не более трех неизвестных сил.  [c.166]

Обратим внимание на то, что для плоской системы параллельных сил получаем два уравнения равновесия, т. е. для того, чтобы задача могла быть решенной, число неизвестных сил должно быть не больше двух. Вообще говоря, все задачи на равновесие системы сил, в которых число неизвестных не превосходит числа уравнений статики для этой системы, называются статически определимыми. Если же число неизвестных сил превышает число уравнений статики, которые возможно составить для данной системы, то задача называется статически неопределимой. Решение подобных задач рассмотрено во втором разделе учебника.  [c.45]


Из предыдущего параграфа известно, что условие равновесия произвольной плоской системы сил выражается тремя уравнениями, значит с их помощью можно определить реакции опор только в том случае, если число реакций связи не превышает трех. Таким образом, балка статически определима, если она, например, опирается на три непараллельных шарнирно-прикрепленных стержня (рис. 1.51, а) имеет две опоры, из которых одна шарнирно-неподвижная, другая — шарнирно-подвижная (рис. 1.51,6) опирается на две гладкие поверхности, из которых одна с упором (рис. 1.51, е) опирается в трех точках на гладкие поверхности (рис. 1.51, г) жестко заделана в стену или защемлена специальным приспособлением (рис. 1.51,6). В первых четырех случаях действие сил на балку уравновешивается тремя реакциями опор (рис. 1.51, а, б, б, г).  [c.45]

Механическая система, для которой реакции связей и внутренние силовые факторы не могут быть определены с помощью уравнений равновесия и метода сечений, называется статически неопределимой. Статически неопределимые системы отличаются от статически определимых большим числом наложенных связей.  [c.173]

На рис. 2.27 показаны статически определимые системы, нормальные силы N в которых определяются с помощью одного уравнения проекций на ось х (а), двух уравнений проекций на оси х и у (б), одного уравнения моментов относительно неподвижного шарнира (в). На рис. 2.28 показаны статически неопределимые системы. Нормальная сила N в поперечном сечении бруса, жестко заделанного с обоих концов (рис. 2.28, а), не может быть определена из уравнения проекций на ось х, так как в него входят две неизвестные величины — нормальная сила N и реакция 7 . Системы с числом неизвестных сил, на единицу превышающих число уравнений статики, которые можно составить для этой системы, называются один раз статически неопределимыми. Чтобы решить задачу, необходимо составить дополнительное уравнение перемещений из условия, что общая длина бруса остается неизменной.  [c.173]

На рис. 2.92, а показана двухопорная статически определимая балка. Все три реакции / азс. лу, Яв определяются из трех уравнений равновесия плоской системы сил, после чего, применяя метод сечений, легко найти внутренние силовые факторы в любом сечении балки. Добавим еще одну связь (рис. 2.92, б). В результате этого система стала более прочной и жесткой. Однако теперь из трех уравнений равновесия четыре реакции Яах, оп-  [c.229]

На рис. 2.93, а показана балка, один конец которой защемлен, а другой оперт на шарнирно-подвижную опору. Такая балка является один раз статически неопределимой, поскольку число реакций три, а уравнений равновесия для плоской системы параллельных сил можно составить только два. Для того чтобы превратить данную систему в статически определимую, необходимо устранить лишнюю связь. В качестве лишней связи выбираем шарнирно-подвижную опору. Устранив опору В, получаем статически определимую консольную балку (рис. 2.93, б). Такую систему принято называть основной.  [c.230]

Система приложенных сил Р, Tj, — плоская сходящаяся система, для которой имеют место два уравнения равновесия. В задаче две неизвестные величины Tj и Т , т. е. задача статически определима.  [c.9]

Силы F, Q, Tj и Tj можно ввиду малости размеров бочки считать пересекающимися в одной точке А. Поэтому мы имеем дело с равновесием твердого тела под действием пространственной системы сходящихся сил, для которой имеют место три уравнения равновесия. Неизвестных в задаче три Т , Т , Q, т. е. задача статически определимая. Начало координат поместим в точке А—точке пересечения линий действия всех сил. Ось Ах направим параллельно ВС, ось Ау—по линии действия силы Q, ось Az — вертикально вверх.  [c.26]

Решение. Ребро куба и величина заряда в точке О не даны. Обозначим их соответственно через а я q. Другие неизвестные заряды обозначим через е , е , е . Силы взаимодействия направлены но прямым ОА, ОВ, ОС, 0D, 00 . Данная система сил образует пространственную сходящуюся систему, для которой имеют место три уравнения равновесия. Неизвестных в задаче три е , е е , т. е, задача статически определима.  [c.30]

Разложим реакцию на две взаимно перпендикулярные составляющие— горизонтальную Хд и вертикальную Yg. Направления этих составляющих примем совпадающими с направлениями осей Вх и By. Таким образом, стрела находится в равновесии под действием плоской системы пяти сил Q, Р, Т, Хд, Уд, для которой имеют место три уравнения равновесия. Неизвестных в задаче три Т, Хд, Уд, т. е. задача статически определима.  [c.46]

Реакцию представим в виде двух составляющих сил и Уд, направленных вдоль соответствующих осей координат в положительном направлении, и учтем, что реактивная пара сил препятствует повороту балки по ходу часовой стрелки. Момент этой пары обозначим через т . Таким образом, балка находится в равновесии под действием четырех сил Р, Q, Х , Уд и реактивной пары сил с моментом /Лд. Эти силы образуют плоскую систему произвольно расположенных сил, для которой имеют место три уравнения равновесия. Неизвестных в задаче три Хд, Кд, тд, т. е. задача статически определима.  [c.56]

Таким образом, плита находится в равновесии под действием пространственной системы сил Р, Q, Х , Z , Ti, Tj. Т , для которой имеют место шесть уравнений равновесия. Неизвестных в задаче шесть YZ , Т , Т , Тд —задача статически определима.  [c.101]

После раскрьттия статической неопределимости дальнейший расчет ведется как для статически определимых систем. Основная система загружается заданными силами и найденными неизвестными и из уравнений статики определяются опорные реакции. Затем обычными методами строятся эпюры рнутоенних силовых факторов.  [c.69]

Конструкцию, усилия в которой НС Moiyr быть определены только при помощи уравнений статики, называют статически неопределимой С точки зрения расчета ее удобно рассматривать как некоторую статически определимую систему, именуемую в последующем основной системой, на которую наложены дополнительные связи.  [c.17]

В этом случае имеем три уравнения равновесия с тремя неизвестными. Задача статически определима. Приложенные силы удовлетворяют тоже трем y Jювиям равновесия, т. е. равны нулю суммы моментов приложенных сил относительно каждой из трех осей координат. В эти условия не входят неизвестные силы реакций. Существует много разных систем сил, удовлетворяющих этим трем условиям. Для каждой из таких систем приложенных сил получим свои реакции связи.  [c.92]

Рассмотрим условие статической определимости плоской кине-матич( Ской цепи. Для каждого звена такой цепи можно составить три уравнения равновесия. Пусть кинематическая цепь состоит из п звеньев, образующих рд низших кинематических пар. Тогда число подлежащих определению неизвестных равно 2рд, а общее число уравнений равновесия, которые можно составить для определения этих неизвестных, равно Зп. Значит для статической опреде-лимосги кинематической цепи должно соблюдаться условие 2рд = = 3/2, откуда  [c.83]

Наконец, основную систему можно получить и постановкой промежуточного шарнира в каком-либо сечении (рис. 400, б). Таким путем получаем статически определимую шарнирную балку. Здесь уже удалена не внешняя, а внутренняя связь. Так как постаноакой шарнира ликвидируется изгибающий момент в данном сечении балки, то для восстановления утраченных связей прикладываем два равных и противоположно направленных момента М = Х , представляющих собой действие друг на друга отделенных шарниром частей балки. Уравнение перемещений (14.2) в этом случае предстак-ляет собой равенство нулю взаимного угла поворота сечений правой и левой частей балки, примыкающих к шарниру (рис. 400, г)  [c.398]


Рассмотрим статическую определимость любого плоского механизма без избыточных связей (i/i, = 0), в состав которого входят п подвижных звеньев, р низших и рн высших кинематических пар. Поскольку для кажд01о звена механизма можно записать три расчетных уравнения (5.1) (5.3), то общее число уравнений для всех его п подвижных звеньев составит N, = Зп.  [c.183]

Расчетусилий в стержнях фермы. Способ выреза-Г1 и я узлов. Фермой (рис. 1.46) называется геометрически неизменяемая конструкция, образованная прямолинейными стержнями, соединенными друг с другом концами при помощи шарниров. Шарнирные соединения концов стержней называются узлами. Ферма является статически определимой, если число узлов п и число стержней т удовлетворяют уравнению  [c.134]

Таким образом, барабан находится в равновесии под действием сил Т, F, Р, Хц, Ffl, Xji, Yл, Для этой системы сил, расположенной произвольным образом в пространстве, имеют место шесть уравнений равновесия. Неизвестных в задаче шесть Х , УZj , а> Р—аадача статически определима.  [c.100]


Смотреть страницы где упоминается термин 95 — Уравнения определимых : [c.92]    [c.142]    [c.61]    [c.247]    [c.40]    [c.196]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.517 ]

Прочность, устойчивость, колебания Том 1 (1966) -- [ c.517 ]



ПОИСК



Непосредственное формирование и решение некоторых систем уравнений. Статически определимые задачи. Смешанный метод. Метод перемещений

О линеаризированных уравнениях статически определимых соотношений теории идеальной пластичности

О линеаризованных уравнениях кинематически определимых задач

Статически неопределимые механизмы. Динамическое истолкование структурной формулы. Лишние неизвестные в уравнениях для определения реакций в кинематических парах. Зависимость статической определимости механизма от расположения приложенных сил



© 2025 Mash-xxl.info Реклама на сайте