Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

304—306 — Типы упругие 280, 297 — Характеристики

В табл.6.5.5 приведены графики связи со и А для некоторых типов упругих характеристик.  [c.367]

Здесь Ai, и /Ig — коэффициенты, зависящие от типа и сечения ремня, его упругих характеристик и плотности.  [c.523]

Опытные значения упругих характеристик материалов трех различных типов приведены в табл. 4.8. Характеристики определяли в диапазоне напряжений, не превышающих 50 % от разрушающих. В указанном диапазоне диаграммы деформирования при растяжении и сжатии этих материалов с достаточной точностью можно считать линейными (см. рис. 4.4—4.7). Разброс значений (см. табл. 4.8) упругих постоянных незначителен.  [c.111]


Из анализа экспериментальных данных следует, что при переработке материалов типа С-1-19-55 целесообразно выбирать степень натяжения арматуры порядка 0,1Лм- Это может обеспечить рост модулей упругости на 20%. Однако не исключено, что для материалов с большими углами наклона волокон основы степень оптимального натяжения может быть отличной от рассмотренного. Влияние натяжения арматуры на прочность при растяжении и сжатии более значительное, чем на упругие характеристики. Необходимая для частичного выпрямления арматуры степень ее натяжения, очевидно, будет меньше, если натяжение осуществлять при повышенных температурах. В этом случае облегчается подвижность волокон в размягченном связующем.  [c.120]

Экспериментальные данные по упругим характеристикам для трех типов материалов приведены в табл. 5.14. Их анализ показывает, что стеклопластики с матрицей ФН имеют меньшие значения модуля сдви-  [c.157]

Влияние свойств исходных компонентов и типа матрицы на свойства рассматриваемых материалов можно увидеть, сравнивая опытные и расчетные значения их упругих характеристик (табл. 5.15). Расчетные значения были вычислены по приближенным зависимостям (см. табл. 5.2). Упругие характеристики матриц были близки по значениям и принимались =  [c.158]

О реализации упругих свойств исходных компонентов (арматуры и связующего) в, исследованных материалах можно судить по данным табл. 5.19, где сопоставлены расчетные и экспериментальные значения их упругих постоянных. Расчет упругих характеристик рассматриваемого типа материалов проводили путем сведения реальной их структуры к слоистой модели, как это изложено на с. 122. Расчетные зависимости приведены в табл. 5.2 и 3.6.  [c.163]

Упругие свойства композиционных материалов, изготовленных на основе нитевидных кристаллов, так же как и свойства материалов на основе непрерывных волокон, линейно зависят от их объемного содержания. Это иллюстрируют типичные зависимости изменения модуля упругости материалов с хаотическим распределением нитевидных кристаллов в плоскости ху от их объемного содержания ркр (рис. 7.3). Данные получены на композиционных материалах, изготовленных на основе нитевидных кристаллов A1N и ТЮа- На каждую точку испытано по шесть образцов. Коэффициент вариации значений модуля упругости для обоих типов материалов не превышал 6 %. Экспериментальные значения модуля упругости хорошо согласуются с его расчетными значениями, вычисленными по формулам (7.2)— (7.9). Хорошее совпадение опытных и расчетных значений наблюдается также и для других упругих характеристик.  [c.206]

Одним из серьезных недостатков стеклонаполненных композиционных материалов является низкая герметичность. Этот недостаток ограничивает область применения изделий из этих материалов. Для обеспечения герметичности изделий, используемых для транспортировки или хранения жидких и газообразных продуктов, а также изделий, работающих при избыточном внутреннем и внешнем давлении, производится плакирование внутренней или внешней поверхности изделия термопластичными полимерами. Такая плакировка может осуществляться несколькими способами использование для герметизации трубы из термопласта, которая одновременно является оправкой при намотке труб из стеклопластика, нанесение полимерного покрытия в электростатическом поле и центробежным методом. Наиболее характерным дефектом такого типа изделий являются расслоения на границе плакирующего слоя и основного материала изделия. Кроме того, в процессе эксплуатации таких изделий (нагревание, охлаждение, деформации), вследствие различия коэффициентов температурного расширения, а также упругих характеристик, могут возникать дополнительные расслоения и трещины в пограничной области.  [c.16]


Плоские пружины (пластины) и змеевидные пружины определяют упругие характеристики в виде нелинейных зависимостей общего типа (рис. 53) [107].  [c.210]

Рис. 53. Нелинейная упругая характеристика муфты общего типа Рис. 53. Нелинейная упругая характеристика муфты общего типа
В ряде приводов машин степень влияния нелинейности оказывается незначительной, что позволяет ограничиться при исследовании линейным приближением. Если, например, для нелинейности, связанной с проявлением зазоров в кинематических парах, амплитуда упругого момента в соединении от крутильных колебаний не превосходит величины среднего момента, передаваемого этим соединением, то нелинейные свойства не проявляются. Для различных соединений типа упругих муфт с металлическими и неметаллическими элементами, шлицевых и зубчатых соединений, всегда можно указать условия, в пределах которых можно ограничиться линейной характеристикой [2Э 811.  [c.220]

Линейные демпферы, выполняемые в виде различного типа упругих опор с линейной характеристикой (у газовых и паровых турбин, турбокомпрессоров, компрессоров, центрифуг и т.д.).  [c.54]

Из сказанного также следует, что теорию работы нелинейного демпфера можно излагать на конкретной схеме ротора, например, той, которая применялась при экспериментальных исследованиях при этом общность выводов не пострадает. Действительно, прогибы диска, определяемые уравнением (II. 30), не зависят непосредственно от схемы ротора, они определяются типом нелинейной характеристики упругих сил системы Р (г), построенной для точки ротора, где расположен диск с учетом упругих свойств всего ротора. При проведении решения безразлично какому типу ротора принадлежит эта нелинейная характеристика и за счет какого элемента системы ротор — статор существует нелинейность опор, вала ротора, креплений дисков к валу, самого корпуса и т. д. Для получения нелинейного демпфирования необходимо, чтобы жесткость системы изменялась скачком от величины j до величины С2 при вступлении в работу нелинейного демпфера. Однако величины Q и j в каждом конкретном случае нужно вычислять по-своему.  [c.82]

Если одна из опор имеет упругую нелинейную характеристику типа предварительный натяг, упругость, ограничители (фиг. 27), то приведенная упругая характеристика в точке крепления диска будет иметь вид, представленный на фиг. 8, где первый и последний участки соответствуют упругости, создаваемой одним валом без деформаций опор.  [c.156]

Напомним те основные предпосылки и допущения, исходя из которых определяются упругие характеристики и константы упругих элементов такого типа. При закручивании круглого стержня (рис.  [c.87]

Все приведенные выше характеристики и соотношения одинаковы для винтовых пружин, работающих на растяжение и на сжатие. Вместе с тем здесь следует указать и на некоторые различия этих двух типов упругих элементов.  [c.90]

Как следует из приведенных примеров, классифицировать кинематические пары с упругими связями и упругие сочленения можно как по виду относительного движения сочлененных звеньев, так и по типу упругих элементов, по характеристикам упругих связей. В соответствии с эти-  [c.106]

На основании решения уравнений (1) и расчетов, выполненных на ЭЦВМ для конкретного типа совмещенной опоры, были построены ее упругие характеристики (рис. 2).1 Изображенные на рисунке характеристики иллюстрируют мягкую упругую нелинейность совмещенной опоры при осевом и радиальном нагружении ее вала.  [c.131]

Источники погрешностей тензометра с механическим увеличением деформаций при статических изменениях — несовершенство, неправильный выбор типа и характеристик тензометра, ошибка тарировки, неправильная установка прибора и дефекты в контактах с поверхностью детали, особенно при знакопеременных деформациях и перемещениях (проявляются как гистерезис), изменения температуры, зазоры в соединениях рычажного механизма, упругий гистерезис и последействие в приборах с рабочим упругим элементом при динамических изме рениях, кроме того, — трение в движущихся частях прибора, влияние массы подвижных частей (увеличение массы снижает частоту деформаций, которые можно регистрировать), недостаточная жесткость крепления датчика на детали. Источники погрешностей электрического тензометра, кроме указанных для тензометра с механическим увеличением, связаны с нарушением стабильности питания, влиянием внешних электрических и магнитных полей, погрешностями от регистрирующей аппаратуры.  [c.544]

Система трех уравнений (244) представляет искомые упругие характеристики исследуемой балки в ее концевом сечении. Эти характеристики оказываются существенно нелинейными, т. е. податливости системы не постоянны, а зависят от величин нагружающих усилий. В этих" условиях частота свободных колебаний системы, как известно, также зависит от амплитуды колебаний. Чрезвычайная сложность расчета такого типа систем вынуждает ограничиться определением максимальных из всех возможных податливостей системы, с тем чтобы, использовав их в общем частотном уравнении (232), найти наинизшую из всех возможных частот свободных поперечных колебаний.  [c.248]


Третий тип нелинейных характеристик гидросистем связан с нелинейной упругой характеристикой полостей и магистралей.  [c.12]

Номинальный момент соответствует паспортной (проектной) мощности машины. Коэффициент К учитывает дополнительные динамические нагрузки, связанные в основном с неравномерностью движения, пуском и торможением. Величина этого коэффициента зависит от типа двигателя, привода и рабочей машины. Если режим работы машины, ее упругие характеристики и масса известны, то значение К можно определить расчетом. В других случаях значение К выбирают, ориентируясь на рекомендации. Такие рекомендации составляют на основе экспериментальных исследований и опыта эксплуатации различных машин (см. примеры в табл. 0.1).  [c.11]

На рис 27 представлены типовые конструкции электроверетен ЭВ-ЗМ1 и ЭВН-2. (Наиболее распространены веретена первого типа Некоторые характеристики этих веретен даны в табл. 12 [11, 20]. Массивный корпус 7 веретена ЭВ-ЗМ1 (рис. 26, а), применяемого иа прядильных центрифугальных машинах вискозного производства, устанавливают на машине с помощью трех упругих амортизаторов 8 Съемную цилиндрическую кружку 1 насаживают иа бронзовый насадок 2, жестко закрепленный на гибком консольном шпинделе 4, нижний конец которого запрессован в полой втулке 6 вращающегося ротора 5 асинхронного электродвигателя Для ограничения колебаний при разгоне веретена в верхней части шпинделя имеется ограничитель 3, состоящий из текстолитового кольца, через которое шпиндель проходит с зазором, и наружного резинового кольца.  [c.225]

При определении упругих характеристик гибридного монослоя, содержащего менее жесткие волокна типа В и более жесткие волокна типа Су следует учитывать тип микроструктуры (рис. 5.1.4).  [c.282]

В отличие от линейных систем при нелинейных колебаниях зависимость амплитуды А от частоты р, как правило, неоднозначна и определяется типом нелинейной упругой характеристики /( ).  [c.370]

ВОЛОКОН является несовершенной, в связи с чем волокна с одинаковыми механическими характеристиками могут обладать различными поверхностными свойствами. Таким образом, в случае углеродных волокон не только невозможно механическое перенесение выводов, сделанных для какого-либо одного типа волокон, на другие, но и, вообще, затруднено точное описание поверхностных свойств даже для одной марки углеродных волокон. Несмотря на большие успехи в изучении структуры и свойств углеродных волокон, в этой области остается сделать еще очень многое, особенно при исследовании совместимости волокон с металлами. Следует отметить, что потенциально низкая стоимость углеродных волокон в сочетании с их способностью сохранять высокие значения прочностных и упругих характеристик при нагреве до весьма высоких температур делает эти волокна перспективным упрочните-лем композиционных материалов с металлической матрицей. Основными трудностями при разработке таких материалов являются высокая реакционная способность углеродных волокон в контакте с большинством металлов и сложность манипуляций с волокнами из-за их малых размеров.  [c.356]

Упругие характеристики материала стеклопластиковых оболочек типа I принимали следующими Ei =2,30-10 МПа, Е2 =  [c.155]

Ниже анализируются результаты расчета шести типов оболочек с монослоями на полимерной и металлической матрицах, упругие характеристики которых представлены в табл. 5.1.  [c.212]

При расчетах силы закрепления следует учитывать упругую характеристику ЗМ. Самотормозящие ЗМ (винтовые, клиновые, эксцентриковые и т. п.) имеют линейную зависимость между приложенной силой и упругим перемещением (тип I).  [c.375]

На основе уравнений динамической теории упругости анизотропного тела в статье [4] выведены характеристические уравнения для определения частот собственных колебаний двухслойной полосы. Найдена связь между частотами собственных колебаний, упругими характеристиками и толщинами слоев. Доказано, что в двухслойной полосе могут возникнуть два типа собственных колебаний — сдвиговые и продольные.  [c.20]

Выбор системы контроля. Аппаратуру для контроля методом эмиссии выпускают не в виде универсальной системы, а в виде типовых блоков, позволяюш,их обеспечить оптимальную систему контроля в зависимости от особенностей объекта испытаний и других условий (табл. 33 и 34). Выбирая систему контроля, ксследуют характеристики объекта испытаний с помощью имитатора источника сигнала, например излучающего преобразователя эхо-дефектоскопа, который перемещают по изделию. С помощью приемного преобразователя снимают характеристики ослабления сигналов с увеличением расстояния, что позволяет определить необходимую расстановку преобразователей. Далее определяют тип упругих волн, которые предполагается регистрировать, и скорость их распространения, что необходимо для выбора преобразователей и настройки системы локации источника сигнала.  [c.318]

Были исследованы модельные стеклопластики на основе эпоксидного связующего ЭДТ-10 и многослойных стеклотканей, различающиеся по толщине, схемам переплетения и типам волокон. Для изготовления стеклотканей были использованы сплошные и полые (капиллярные) волокна из алюмобороси-ликатного стекла с парафино-эмульсионным замасливателем и высокомодульного стекла ВМ-1 с замасливателем типа 752. Модуль упругости и коэффициент Пуассона для алюмоборо-силикатных волокон 3 = 7,31 X X 10 МПа, Va = 0,25, для высокомодульных волокон ВМ-1 — а = = 10 МПа, = 0,25 упругие характеристики связующего ЭДТ-10 с = 2900 МПа, V = 0,35.  [c.98]

Для композищюнных материалов с пироуглеродной матрицей (два последних типа) по представленным в табл. 6.6 данным трудно установи ь влияние структуры на их упругие свойства. Более четкое представление о зависимости упругих характеристик углерод-углеродных композиционных материалов от структуры армирования и свойств исходных компонентов можно получить сопоставлением расчетных и экспериментальных значений (табл. 6.8). Расчетные значения вычисляли по зависимостям, полученным для аналогичных структур в гл. 5. При расчете модуль упругости углеродной матрицы принят равным 6110 МПа (усредненные данные эксперимента), волокон — 2,2-10 МПа. Объемное содержание арматуры н материалах устанавливали двумя способами по плотностям исходного каркаса и волокон [см. (1.2)], а также по содержанию волокон в материалах  [c.176]

Так, для типичного нелинейного соединения типа упругое соединение с зазором и предварительной постоянной нагрузкой упругая характеристика имеет вид Срис. 61)  [c.173]

Элементы усиления бортового листа, как правило, приваривают, в особо ответственных случаях — приклепывают. Короб вибрационного грохота можно подвешивать иа упругих связях к опорным конструкциям или опирать на виброизоляторы, установленные на фундамент или основание. Предпочтение отдается последним, т. е. вибрационным грохотам опорного типа. В качестве виброизоляторов чаще используют цилиндрические витые пружины. В некоторых случаях для грохотов тяжелого типа в качестве виброизоляторов начали применять резинокордные пневмобаллонные упругие опоры [27], нелинейная упругая характеристика которых значительно облегчает проход грохота через резонанс при запуске и останове. Для уменьшения времени и амплитуды резонансных колебаний (см. гл. X) применяют также вибровозбудители с выдвижными дебалансами и электродинамическое торможение приводного электродвигателя.  [c.351]


Резинометаллические виброизоляторы. Упругим элементом виброизоляторов этого типа является фасонный резиновый массив, соединенный с деталями металлической ардгатуры с помощью вулканизации. Достоинства резинометаллических виброизоляторов заключаются в простоте их конструкции, в широком диапазоне изменения их упругих характеристик, определяющихся как маркой применяемой резины, так и конфигурацией упругого элемента, в возможности произвольной ориентировки Виброизоляторов относительно основания. Особые свойства резины определяют, однако, и их недостатки изменение динамических свойств при длительной эксплуатации, связанное с так называемым старением резины недостаточная надежность соединения резинового массива с металлической арматурой ухудшение виброза Щитных свойств в условиях, отличающихся от нормальных (например, при повышенной или пониженной температуре и влажности) недостаточное в отдельных случаях демпфирование невозможность использования в атмосфере, содержащей Пары бензина, масла и т. п.  [c.199]

И.А.Биргер в работе [7] предложил другие методы линеаризации уравнений теории малых упругопластических деформащсй метод дополнительных деформаций и метод переменных параметров упругости. При линеаризации уравнений пластичности методом дополнительных деформаций предполагается, что в эквивалентном упругом теле напряжения совпадают с напряжениями пластического тела, а упругие характеристики соответствуют первоначальным упругим характеристикам. Такая замена возможна, если в эквивалентном упругом теле имеются начальные деформации типа температурных деформаций. Эти неизвестные начальные (дополнительные) деформации определяются последовательными приближениями.  [c.231]

Амплитуда и частота автоколебаний могут быть найдены только из решения нелинейного уравнения. Для систем, у которых небольшие нелинейности упругой характеристики, малый приток энергаи и малое ее рассеяние за период колебаний, форма колебаний близка к гармонической, частота автоколебаний близка к частоте свободных колебаний. Такие колебательные системы называют системами осцилляторного типа, в физике их назьтают томпсоновскими автоколебательными системами.  [c.355]

Таким образом, программа предусматривает расчет конструкций из элементов коротких цилиндрических, сферических, конических, эллиптических оболочек постоянной толщины, цилиндрических оболочек линейно-переменной толщины, нолубесконечных оболочек, круглых и кольцевых пластин и различных кольцевых деталей (табл. 2) при различных (с учетом разработанной классификации) видах и упругих характеристиках разрывных сопряжений (сы. табл. 1), при краевых условиях в усилиях, смещениях, смешанных, а также при краевых условиях в виде сопряжения оболочек с упругими элементами заданной жесткости. Типы нагружения — силовые нагрузки в виде усилий затяга шпилек фланцевых соединений, затяга винтов узлов уплотнения, равномерного, линейно-переменного давления, распределенных по параллельному кругу изгибающих моментов и перерезывающих усилий, осевых усилий, центробежных сил температурные нагрузки в виде краевых температурных коэффициентов влияния — перемещений для элементов, рассматриваемых как свободные (при температуре, постоянной по толщине и изменяющейся вдоль меридиана) либо усилий для элементов, рассматриваемых как часть бесконечных оболочек (при переменной по толщине температуре).  [c.85]

Сделанные упрощения не справедливы для многофазного сплава типа механической смеси, состоящего из разнородных кристаллических зерен с кубической решеткой или из разнородных упругоизотропных зерен, имеющих различные упругие характеристики. Несмотря на то, что в таком поликристалле каждое зерно в отдельности изотропно по отношению к тепловому расширению и всестороннему равномерному растяжению или сжатию, модули всестороннего сжатия поликристалла и отдельных зерен различны, а избыточная температурная деформация зерен Лей =7 О. Поэтому в (2.69)—(2.72) не удается перейти от тензорных компонентов напряжений и деформаций к девнаторным компонентам, т. е. на неупругое деформирование таких поликристаллов в общем случае должны повлиять и гидростатическая составляющая тензора осредненных напряжений, и даже однородное по объему изменение температуры. Влияние этих факторов не учитывается в распространенных феноменологических теориях неупругого деформирования материала (см. 1.5).  [c.104]

Рассмотрим колебания нелинейной системы под действием нагрузки в виде узкополосной случайной функции типа (1.5). Примем простейшую форму нелинейной упругой характеристики — кубическую. Движение системы описывается уравнением Дуф-финга  [c.10]

Гофрированная мембрана (рис. 12.1) отличается от плоской наличием концентрических волн. Свойства гофрированной мембраны во многом зависят от ее профиля — образующей срединной поверхности. В зависимости от формьг профиля упругая характеристика мембраны Wq — f (р) может быть линейной, затухающей или возрастающей по давлению. В этом отношении гофрированные мембраны имеют преимущество перед другими типами манометрических упругих элементов (сильфонов, трубчатых пружин), упругие характеристики которых близки к линейным. С помощью гофрированных мембран можно решать задачи измерения величин, нелинейно связанных с давлением (например, расхода жидкости или газа, проходящего по трубопроводу, воздушной скорости полета самолета, высоты его подъема и пр.). Для этого упругая характеристика мембраны должна быть линейной по измеряемому параметру.  [c.249]

Установив основное уравнение (i), Кулон углубляется в более тщательное изучение механических свойств материалов, из которых изготовляется проволока. Для каждого типа проволоки об находит предел упругости при кручении, превышение которого приводит к появлению некоторой остаточной деформации. Точно так же он показывает, что если проволока подвергнута предварительно первоначальному закручиванию далеко за предел упругости, то материал в дальнейшем становится более твердым и его предел упругости повышается, между тем как входящая в уравнение (i) величина i остается неизменной. С другой сторны, путем отжига он получает возможность снизить твердость, вызванную пластическим деформированием. Опираясь на эти опыты, Кулон утверждает, что для того, чтобы характеризовать механические свойства материала, необходимы две численные характеристики, а именно число i, определяющее упругое свойство материала, и число, указывающее предел упругости, который зависит от величины сил сцепления. Холодной обработкой или быстрой закалкой можно увеличить эти силы сцепления и таким путем повысить предел упругости, но в нашем распоряжении нет средств, способных изменить упругую характеристику материала, определяемую постоянной 1. Для того чтобы доказать, что это заключение распространяется также и на другие виды деформирования. Кулон проводит испытания на изгиб со стальными брусками, отличающимися один от другого лишь характером термической обработки, и показывает, что под малыми нагрузками они дают тот же прогиб (независимо от своей термической истории), но что предел упругости брусьев, подвергшихся отжигу, получается значительно более низким, чем тех, которые подвергались закалке. В связи с этим под большими нагрузками бруски, подвергшиеся отжигу, обнаруживают значительную остаточную деформацию, между тем как термически обработанный металл продолжает оставаться совершенно упругим, поскольку термическая обработка повышает предел упругости, не оказывая никакого влияния на его упругие свойства. Кулон вводит гипотезу, согласно которой всякому упругому материалу свойственно определенное характерное для него размещение молекул, не нарушаемое малыми упругими деформациями. При превышении предела упругости происходит какое-то остаточное скольжение молекул, результатом чего является увеличение сил сцепления, хотя упругая способность материала сохраняется при этом прежней.  [c.69]


Смотреть страницы где упоминается термин 304—306 — Типы упругие 280, 297 — Характеристики : [c.50]    [c.104]    [c.112]    [c.42]    [c.436]    [c.287]   
Детали машин Том 1 (1968) -- [ c.0 ]



ПОИСК



228 — Типы и характеристики

Муфта с с металлическим упругим элементом — Типы 560 — Характеристики

Упругость характеристики

Характеристика упругая



© 2025 Mash-xxl.info Реклама на сайте