Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон гравитационного взаимодействи

Закон гравитационного взаимодействия  [c.45]

Взаимодействие материи. Материальные объекты, расположенные в разных частях пространства, взаимодействуют, т. е. движение одних материальных объектов зависит от наличия других материальных объектов и их движения таковы, скажем, гравитационные, электрические, магнитные и иные взаимодействия. Физическая природа этих взаимодействий связана с понятием о физических полях, которое не укладывается в исходные представления классической механики. Так, например, с точки зрения общей теории относительности гравитационные взаимодействия материи являются следствием того, что время и пространство взаимосвязаны в единый четырехмерный континуум пространство-время , что этот континуум подчиняется законам не евклидовой, а римановой геометрии, т. е. что он искривлен , и что локальная кривизна в каждой его точке зависит от распределения материальных объектов и их движения. Таким образом, физические причины гравитационного взаимодействия материи тесно связаны с такими свойствами пространства и времени, которые не учитываются в исходных предположениях классической механики.  [c.41]


Замечание 3.11.3. Этапы, выделенные в доказательстве теоремы 3.11.4, имеют самостоятельную ценность. Вспомним, что закон электростатического взаимодействия точечных зарядов имеет вид закона Ньютона, когда вместо масс используются заряды, а вместо гравитационной постоянной — диэлектрическая проницаемость. Пусть точечный положительный заряд у находится между бесконечными противоположно заряженными пластинами. Примем, что первая пластина заряжена отрицательно с плотностью заряда —<т. Расстояние от точечного заряда до первой пластины обозначим у, а до второй пластины — 1/2 Цилиндром с осью, перпендикулярной к пластинам и проходящей через точечный заряд, вырежем в этих пластинах два круга радиуса I. В соответствии с этапом 2 доказательства теоремы 3.11.4 силовая функция от воздействия кругов на точечный заряд будет выражаться формулой  [c.268]

Сила гравитационного взаимодействия определяется по закону всемирного тяготения Ньютона  [c.59]

Гравитационное взаимодействие проявляется во взаимном притяжении тел и присуще всем телам независимо от их строения, химического состава и других свойств. Ньютоном был установлен закон, определяющий силу взаимного притяжения тел. Этот закон получил название закона всемирного тяготения между двумя материальными точками, массы которых гп и т , вне зависимости от среды, в которой они находятся, действуют силы  [c.91]

Сам факт существования в природе гравитационного взаимодействия (называемого еще всемирным тяготением) и закон, которому подчиняется это взаимодействие, были открыты Ньютоном и опубликованы им в 1686 г. в упоминавшемся уже труде  [c.56]

Рассмотрим систему, включающую абсолютно твёрдый однородный шар радиуса а, имеющий массу т, и материальную точку, масса которой равна шь Гравитационное взаимодействие однородного шара и материальной точки по закону Ньютона позволяет изучать движение центра шара и материальной точки в условиях задачи двух тел.  [c.252]

Маятник является одним из древнейших физических приборов. С помощью крутильных маятников были открыты законы гравитационного и электрического взаимодействий, измерено давление света, выполнено множество других физических экспериментов. В последнее время предложен и реализуется ряд новых экспериментов для изучения фундаментальных свойств материи, в которых очень малые силы измеряются с помощью крутильных маятников. Чувствительность таких экспериментов зависит от того, насколько ослаблены сейсмические возмущения, действующие на маятник, а также от стабильности его параметров, например, упругих свойств нити подвеса. Но даже если устранены все внешние возмущающие воздействия, остается один принципиальный источник флуктуаций его амплитуды и фазы колебаний. Это хаотическое тепловое движение молекул в нити подвеса и подвешенном теле. Действующая на него флуктуационная сила зависит от температуры и от добротности маятника. Чем выше добротность маятника, тем медленнее затухают его колебания и диссипирует его энергия, превращаясь в тепло, т.е. хаотическое движение молекул. Это означает, что ослабевает и обратный процесс раскачки маятника хаотическим движением молекул, т.е. уменьшается флуктуационная сила, действующая на маятник. Для того, чтобы уменьшить затухание, тело и нить подвеса изготовляют из высококачественного плавленого кварца — материала с низкими потерями упругой энергии, а также принимают специальные меры для исключения других источников диссипации энергии. В результате добротность крутильных маятников достигает величины -10 .  [c.37]


Показать, что второй закон Ньютона для тел, участвующих в гравитационном взаимодействии, це меняется  [c.70]

К потенциальным силам относятся гравитационные. Действительно, если точка массы т взаимодействует по закону всемирного тяготения с точкой массы М, расположенной в начале координат, то  [c.44]

Теорема о вириале служит ключом к пониманию строения любого вещества, в котором силы сцепления обусловлены главным образом притяжением частиц по закону обратных квадратов. Среднее расстояние между атомами рли атомными ядрами в типичной звезде, по-видимому, всегда больше 10- см, так как плотность такой звезды не превышает 10- г/см . Такие расстояния слишком велики для сильных ядерных взаимодействий, эффективных в пределах около 10 з см поэтому только силы гравитационного притяжения соединяют звезду в единое целое.  [c.302]

Поле тяготения мы рассматривали на основе закона всемирного тяготения Ньютона, но этот закон не учитывает зависимости силы взаимного притяжения тел от времени. Иначе говоря, в нем предполагается, что действие сил притяжения проявляется мгновенно и не зависит от свойств пространства, разделяющего взаимодействующие тела . Свойства пространства и время в теории тяготения Ньютона не зависят от свойств материальных объектов и их движения. В дальнейшем в физике было установлено, что каждое действие передается в пространстве с конечной скоростью и хотя скорость распространения гравитационного  [c.105]

П. является адроном. Кроме сильного взаимодействия он также участвует во всех др. фундам. взаимодействиях электромагнитном, слабом и гравитационном, П. относится к классу барионов его барионное число В = i. Законом сохранения барионного числа  [c.164]

Коэф. пропорциональности G наз. постоянной тяготения Ньютона или гравитационной постоянной. По совр. данным, G = 6,6745(8) 10 м- /кг с . Согласно закону Ньютона, сила Т. зависит только от положения частиц в данный момент времени, и поэтому гравитац. взаимодействие распространяется мгновенно.  [c.188]

Открыв закон всемирного тяготения — один из фундаментальных законов природы, Ньютон дал возможность количественно определить одну разновидность силового взаимодействия — гравитационное. Согласно этому закону сила притяжения между двумя телами определяется из уравнения  [c.164]

Утверждение, что физическая наука началась после того, как И Ньютон на основе предложенного им закона гравитационного взаимодействия получил в качестве решения сформулированных им же уравнений движения все три эмпирических закона Кеплера, вряд ли является чрезмерным преувеличением, хотя и представляет собой большое упрощение. Такое достижение должно было убедить не только автора, но и всех его возможных оппонентов в правильности изложенных представлений о природе и законах, управляющих движением, произвести громадное впечатление на научный мир и то, что сегодня принято называть общественным мнением, возбудить энтузиазм исследователей и породить у них желание следовать блестящему примеру первопроходца. Достижение И. Ньютона в решении задачи о движении тел под действием гравитационного притяжения - эту задачу сегодня называют задачей Кеплера - представляет собой событие намного большее, чем решение частной задачи. По существу, оно оказалось одной из величаиших вершин в познании окружающего Мира, поднявшись на которую человечество увидело новые горизонты, о существовании которых до того времени не подозревало. Сравнить это достижение с чем-нибудь другим трудно. Может быть, что-то похожее испытали люди полтора-два столетия раньше в эпоху великих географических открытий. Но то были открытия на поверхности Земли. А здесь, подлинно открылась бездна . И открылась она не только в бескрайность Вселенной, но и внутрь самого человека, показав ему бездонные глубины разума и его собственного интеллекта. Такое открытие, без всяких сомнений, изменило самого человека, необратимо сделало его другим.  [c.105]

Примерно половина этой энергии излучается и столько же идет на повышение температуры вещества [43]. Сжатие сопровождается нагревом вещества до громадных температур. При этом состояние вещества качественно меняется. С атомов срываются электронные оболочки, происходит разрушение ядер атомов и составляющих ядра частиц. Законы, которыми описывается динамика этого сверхплотного и раскаленного кослшческого сгустка, принципиально отличны от ньютоновских. С ростом температуры растут скорости частиц сгустка, растет и гравитационное взаимодействие между ними. При энергиях сталкивающихся электронов порядка 10 ГэВ (1 Гэв = 10 эВ) величины гравитационного взаимодействия, электромагнитного, сильного и слабого, примерно равны друг другу. Гравитационное взаимодействие становится по- настоящему сильным. Это уже совсем иная, неньютоновская, физика, раскрывающая новые грани исследования гравитационной постоянной. К рассмотрению этих вопросов мы вернемся после изучения физической сущности новых фундаментальных постоянных.  [c.62]

Гравитация и относительность. Теперь можно снова вернуться к рассмотрению проблем, связанных с гравитационной постоянной. Напомним, что начатое в I исследование осталось неоконченным— теория тяготения Ньютона не могла вскрыть причины явления. Расчеты по закону всемирного тяготения Ц) не согласовывались с результата] ш наблюдений вращения перигелия Меркурия. Создателю пeLдаaльнoй теории относительности А. Эйнштейну, вьшвившел1у фундаментальное значение скорости света как максимально возможной скорости распространения любых взаимодействий в природе, был ясен и другой принципиальный недостаток ньютоновской теории. Ведь в ней скорость распространения гравитационного взаимодействия считалась бесконеч-  [c.139]


Мы не будем обсуждать гравитационные взаимодействия, поскольку они не играют роли в структуре элементарных частиц (по крайней мере на расстояниях, доступных экспериментальному исследованию сейчас и в ближайшем будущем). Укажем лишь, что любые искажения геометрии внутри частицы, исчезающие на больших расстояниях, не повлияют на законы сохранения энерг ии, импульса, момента и центра инерции, но в принципе могут повлиять на законы сохранения, связанные с отражениями, и на законы сохранения, не имеющие геометрического происхож-цення.  [c.285]

И все же закон сохранения странности не является единственной причиной существования слабых распадов. Второй (и последней) причиной является то, что нейтрино подвержены только слабым (если не считать гравитационных) взаимодействиям. Поэтому, если распад даже с сохранением странности возможен только с участием нейтрино, то он будет слабым. Например, отрицательный пион имеет нулевую странность. Продуктами его распада могут быть только более легкие частицы, т. е. мюоны, электроны, нейтрино и нейтральный пион. Один из продуктов распада должен иметь отрицательный электрический заряд, т. е. быть мюоном или электроном. Обе эти частицы имеют спин половина и тем самым уносят только полуцелый момент. Так как спин отрицательного пиона — целый, то наряду с мюоном (или электроном) одним из продуктов его распада должна быть электрически нейтральная частица с полуце-лым спином. Единственными легкими частицами, удовлетворяющими этому условию, являются нейтрино. Поэтому распад отрицательного  [c.399]

ЭНТРОПИЯ ВСЕЛЁННОЙ—величина, характеризующая степень неупорядоченности и тепловое состояние Вселенной. Количественно оценить полную Э. В. как энтропию Клаузиуса (см. Энтропия) нельзя, поскольку Вселенная не является термодинамич. системой. Действительно, из-за того, что гравитационное взаимодействие является дальнодействующим и неэкранируемым, грави-тац. энергия Вселенной (в той степени, в какой её вообще можно определить) не пропорциональна её объёму. Напр., в ньютоновском приближении гравитац. энергию сферич, массы М с однородной плотностью р можно оценить по ф-ле и—GM-V = — Ср где С — ньютоновская гравитационная постоянная, V—объём. Полная энергия Вселенной тоже не пропорциональна объёму и потому не есть аддитивная величина. Кроме того. Вселенная, согласно Хаббла закону, расширяется, т. е. нестационарна. Оба эти факта означают, что Вселенная не удовлетворяет исходным аксиомам термодинамики об аддитивности энергии и существовании термодинамич. равновесия. Поэтому Вселенная как целое не характеризуется и к.-л. одной темп-рой. Оценить Э. В. как энтропию Больцмана А In Г, где k — Больцмана постоянная, Г—число возможных микросостояний системы, также нельзя, поскольку Вселенная не пробегает все возможные состояния, а эволюцио-  [c.618]

Гравптацнонпая (тяжелая) масса — мера гравитационного взаимодействия данного тела с другими. Равенство инертной и гравитационной массы — важнейший закон природы.  [c.86]

Введение. Закон гравитационного притяжения справедлив для двух материальных частиц, а не для тел конечных размеров с произвольным распределением масс. Однако можно показать, что сферические тела с таким распределением масс, что слои равной плотности являются концентрическими сферами, притягивают друг друга так, как если бы массы были сосредоточены в их центрах. Кроме того, можно показать, что если расстояние между двумя телами велико по сравнению с их размерами, то притяжение между ними проявляется в сущности так, как если бы массы были сосредоточены в их центрах. Эти результаты дают возможность в большинстве случаев пренебрегать размерами и распределением масс и рассматривать гравитационное взаимодействие между двумя телами так, как если бы они были материальными частицами. Тем не менее н солнечной системе и системах двойных звезд имеются случаи, когда отклонения от сферической формы оказывают значительное влияние. Следовательно, необходимо исследовать случай гравитационного взаимоде11Ствия между двумя конечными телами, каждое из которых обладает произвольным распределением масс. Эта проблема представляет значительные трудности. Гораздо легче рассмотреть притяжение между телом конечных размеров и материальной частицей. Эта упрощенная проблема применяется ко многим случаям в астрономии и будет рассмотрена перво11.  [c.104]

Если мы снова прибегнем к мысленному эксперименту , рассмотрев широкую двойную систему с двумя невращающимися звездами, движущимися по эллипсам относительно их центра масс, то они будут сферической формы и взаимодействовать как материальные точки. Если уменьшить расстояние между компонентами, то период, разумеется, тоже уменьшится в соответствии с III законом Кеплера наконец, наступит время, когда гравитационное взаимодействие между компонентами приведет к возникновению на них ощутимых приливов и каждая звезда окажется вытянутой вдоль прямой, соединяющей их центры. Если звезды еще и вращаются, то их фигуры будут сплющиваться, подобно фигуре Земли вследствие ее вращения. Копал предположил, что звезды в тесной двойной будут вращаться со скоростями, определяемыми максимальной угловой скоростью движения по орбите. Кривая блеска подобной затменной двойной звезды не содержала бы никаких прямолинейных участков (см. рис. 14.8).  [c.469]

А2.4. Силы тяготения. Количеств вой мерой гравитационных взаимодействий являются силы тяготения, описываемые законом всемирного тяготения (открытым Ньютоном) две материальные точки с массами Ш] и шг, находящиеся на расстоянии г, притягиваются друг к Дфугу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной кващ>ату расстопия между нимн  [c.22]

Сила взаимодействия р определяется расстоянием между телаш, следовательно, при переходе к другой системе отсчета она останется неизменной. Величины / и в правой- часта равенства также не зависят от скорости. Приращение скорости До не связано с величиной самой скорости. Отсюда следует, что второй закон Ньютона для тел, участвующих в гравитационном взаимодействии, одинаков в любой инерциальной системе.  [c.75]

ТРЁХ ТЕЛ ЗАДАЧА, одна из частных задач небесной механики о движении трёх тел, взаимно притягивающихся по закону тяготения Ньютона. Если притягивающиеся тела рассматривать как материальные точки (что выполняется, напр., в первом приближении для Солнца, Земли и Луны или для Солнца, Юпитера и к.-л. из асхероидов-троянцев), то для ряда случаев могут быть получены простые решения. Так, в движении астероидов-троянцев реализуются т. н. треугольные решения Лагранжа для случая движения тела малой массы (астероида) в поле тяготения двух тел большой массы (Солнца и Юпитера). Астероид-троянец, находясь в т. н, точке либрации, движется по такой орбите, что Солнце, Юпитер и он сам находятся в трёх вершинах равностороннего треугольника. В общем случае устойчивые траектории трёх гравитационно взаимодействующих тел могут быть очень сложными. Существует общее аналитич. решение задачи трёх тел в виде рядов, сходящихся для любого момента времени. Однако из-за медленной сходимости этих рядов вместо аиалитич. метода пользуются численными методами решения Т. т. з. на ЭВМ.  [c.767]


Использование в пространстве Минковского прямоугольных координат обусловлено тем, что в спещ1альыой теории относительности рассматривались только инерниальные системы, т. е. системы, движущиеся друг относительно друга равномерно и прямолинейно. На такие системы по первому закону Ньютона не действуют внешние силы. Однако гакое нлоское четырехмерное пространство является физической абстракцией, так как хорошо известно, что существует одна сила, которая действует везде и всегда,— это сила тяготения. От нее нельзя заслониться никакими экранами, как, например, это можно сделать в случае электромагнитного взаимодействия. Под действием силы тяготения все тела и системы отсчета движутся с ускорением. Напрашивается важный для понимания сущности гравитации вывод инер-циальные системы принципиально непригодны дпя описания тяготения. Для описания действия гравитационных сил надо отказаться от столь привычной вам евклидовой геометрии. Тяготение требует использования нового математического аппарата. Такой аппарат был уже создан. Громадный вклад в разработку 140  [c.140]

Вероятно, это понимали и физики времен установления закона сохранения энергии. Так, еще в 1842 г. Уильям Гров одним из первых разделил силы на движение, теплоту, свет, электричество, магнетизм и химическое сродство — силу стремления химических элементов к взаимодействию Г ельмгольц и Гиббс позже показали, что химическое сродство определяется свободной энергией системы, то есть той частью полной энергии ее, которую можно превратить в работу в данных условиях окружающей среды. Майеровы силы — гравитационную, механическую, тепловую, магнитную, электрическую, химическую — Гельмгольц, как мы видели, сгруппировал в напряженные и живые , рассмотрев, кроме перечисленных, еще и упругостную. Ранкин применяет другую терминологию — делит энергию на потенциальную и актуальную и добавляет к видам Гельмгольца лучистую теплоту , свет, статическое электричество . Интересно, что через 100 лет в знаменитых фейнмановских лекциях прибавляется только ядерная энергия и энергия массы ...  [c.126]

МАГНЕТИЗМ [земной (проявляется воздействием магнитного поля Земли является разделом геофизики, изучающим распределение в пространстве и изменение во времени магнитного поля Земли, а также связанные с ним процессы в земле и околоземном пространстве) является (разделом физики, изучающим магнитные явления формой материального взаимодействия между электрическими токами, между токами и магнитами и между магнитами)] МАГНИТО-ДИНАМИКА — раздел физики, в котором изучаются процессы намагничивания в изменяющихся во времени магнитных полях МАГНИТООПТИКА — раздел оптики, в котором изучаются испускание, распространение и поглощение света в телах, находящихся в магнитном поле МАГНИТОСТАТИКА изучает свойства стационарного магнитного поля электрических токов или постоянных магнитов МАГНИТОСТ-РИКЦИЯ (проявляется в изменении формы и размеров тела при его намагничивании гигантская проявляется некоторыми редкоземельными магнетиками с превышением в тысячи раз наибольшей величины магнитострикции никеля) МАЗЕР — квантовый генератор радиоволн СВЧ диапазона МАССА [ одна из основных характеристик материи, яв ляющаяся мерой ее инерционных и гравитационных свойств, атомная выражает значение массы атома в атомных единицах массы гравитационная определяется законом всемирного тяготения инертная определяется вторым законом Ньютона критическая — наименьшая масса делящегося вещества, при которой может протекать самоподдерживающаяся цепная ядерная реакция]  [c.246]

Самой важной особенностью поля Т., известной в ньютоновой теории и положенной Эйнштейном в основу его новой теории, является то, что Т. совершенно одинаково действует ка разные тела, сообщая им одинаковые ускорения независимо от их массы, хим. состава и др. свойств. Этот факт был установлен опытным путём ещё Г. 1алиле-ем (G. Galilei) и может быть сформулирован как принцип строгой пропорциональности гравитационной, или тяжёлой, массы Шгр, определяющей взаимодействие тела с полем Т. и входящей в закон (1), и инертной массы т . определяющей сопротивление тела действующей на него силе и входящей во второй закон механики Ньютона (см. Ньютона законы механики). Действительно, ур-ние движения тела в поле Т. записывается в виде  [c.189]

Лриродой возникновения различных сил занимается физика. Интересно, что при огромном разнообразии физических процессов по современным представлениям в основе всех физических взаимодействий лежат лишь четыре, так называемые фундаментальные силы гравитационные, электромагнитные, сильные (ядерные) и слабые (взаимодействия элементарных частиц). Правда, две последние связаны с микромиром, в котором действуют законы квантовой механики, и понятие сила несравненно сложнее, чем сила в обычном понимании (притяжение, отталкивание или давление). В последнее время некоторые физики высказывают мысль, что единственным фундаментальным является слабое взаимодействие.  [c.5]

В динамике космического полета можно отчетливо проследить плодотворные взаимодействия техники и ряда фундаментальных и прикладных наук. Особенно следует подчеркнуть широкое использование методов и результатов небесной механики для решения задач динамики в гравитационных полях Солнца и планет солнечной системы. Так теория кеплеровых движений, теория возмущений орбит, исследование движений в оскулирующих элементах (метод Лагранжа) перешли из небесной механики в динамику космического полета с относительно небольшими изменениями и дополнениями. Но в ряде задач (например, теория движения искусственных спутников Земли) динамики космического полета пришлось создавать и разрабатывать совершенно новые методы исследования. Эти новшества вызываются дополнительными силами, которые в задачах небесной механики не играют существенной роли. Так, при движении спутников Земли на высотах до 500—700 км аэродинамические силы, обусловленные наличием атмосферы, оказывают влияние на законы движения и приводят к постепенному изменению (эволюции) орбит спутников. Изучение этих эволюций требует знания строения атмосферы на больших высотах и знания, законов аэродинамического сопротивления при полете с первой космической скоростью в весьма разреженной среде. Развитие космонавтики обусловило быстрый прогресс и аэродинамики и метеорологии.  [c.19]

Здесь Р — сумма внешних сил, приложенных к частице. Эта сила зависит от положения частицы и времени, т. е. должна быть задана Векторным полем. Силу Р следует рассматривать как результат усреднения правой части закона изменения импульса всех молекул, из которых состоит данная частица среды (см. (2.103)). Сила Р обусловлена, во-первых, силами взаимодействия молекул среды друг с другом и, во-вторых, включает в себя внешние по отношению ко всей среде силовые поля. Будем рассматривать среду с весьма малым радиусом действия межмолекулярных сил. Тогда сила, с которой физически бесконечно малые частицы среды действуют на данную частицу, проявляется только в тонком поверхностном слое этой частицы. Толщиной такого слоя в механике сплошных сред заведомо пренебрегают, а силы, с которыми соседние частицы среды действуют друг на друга, считают п оверхностными силами. Что касается внешних силовых полей, то они практически одинаково действуют на все молекулы, находящиеся в объеме АУ. Поэтому эти силы называются объемными силами (если эти силы пропорциональны массе частицы, то их называют массовыми силами). Такими силами являются гравитационные и электромагнитные силы, а также силы инерции, которые появляются при изучении движения среды относительно неинерциальных систем отсчета.  [c.472]


Смотреть страницы где упоминается термин Закон гравитационного взаимодействи : [c.124]    [c.276]    [c.94]    [c.340]    [c.214]    [c.40]    [c.32]    [c.772]    [c.225]    [c.46]    [c.147]    [c.254]    [c.524]    [c.527]    [c.220]   
Курс лекций по теоретической механике (2001) -- [ c.45 ]



ПОИСК



Взаимодействие гравитационное

Закон гравитационного взаимодействия

Закон гравитационного взаимодействия



© 2025 Mash-xxl.info Реклама на сайте