Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

37 — Понятие Уф-излучения

Существует понятие излучения абсолютно черного тела, спектральная характеристика излучения которого соответствует предельному, максимально возможному тепловому излучению тела при данной температуре. Распределение энергии (е ) в спектре излучения абсолютно черного тела по всем частотам (V) или длинам волн (к) отвечает термодинамически равновесному тепловому  [c.379]

Описанные выше качественные результаты, по-ви-димому, справедливы для высококонцентрированных дисперсных систем. Однако использование уравнения переноса излучения для таких систем по аналогии с гомогенными и разбавленными дисперсными системами обусловлено возможностью применения понятия однородного объема, характеризуемого некоторыми оптическими параметрами [46, 162]. Малый объем можно считать элементарным, если количество поглощенного и рассеянного излучения пропорционально его величине [162]. Интенсивность внешнего излучения должна оставаться приближенно постоянной в пределах этого объема, а количество содержащихся в нем частиц должно быть достаточным для статистически достоверного описания его характеристик средними величинами [162].  [c.145]


При высокой концентрации рассеивающих частиц в результате затенения (в случае крупных частиц) невозможно применить понятие прямого света [161], т. е.. нельзя выбрать такой элементарный объем, в котором внешнее излучение изменяется мало [161]. Следовательно, неприменимы обычные понятия показателя ослабления и других характеристик элементарного объема [161]. Использование уравнения. переноса для таких систем оказывается затруднительным, хотя в принципе оно возможно для определения полусферических характеристик [161]. При этом необходимы специальные измерения параметров среды в определенных условиях.  [c.145]

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]

Яркость. Как отмечалось выше, излучение точечного источника в данном направлении характеризуется силой света. С целью аналогичной характеристики протяженного источника вводится понятие силы света единицы видимой поверхности — яр-  [c.12]

Светимость. В предыдущем пункте введением понятия яркости мы сумели охарактеризовать источники, размерами которых нельзя пренебречь в конкретных случаях. Часто приходится иметь дело с суммарным излучением источника, а не с излучением в данном направлении. В таких случаях источники характеризуются еще одной световой величиной, называемой светимостью.  [c.13]

Прежде чем перейти к изложению основных законов теплового излучения, ознакомимся с некоторыми необходимыми понятиями.  [c.323]

Поглощательная способность. Чтобы охарактеризовать способность тел поглощать падающее на них излучение, вводится понятие поглощательной способности. Под поглощательной способностью тела понимается отношение количества поглощенной поверхностью тела энергии в интервале частот v, v + dv к общему количеству падающего излучения в том же интервале частот  [c.323]

Понятие о световом кванте. Формула (15.3а) получена, как мы уже видели, на основе качественно новой — квантовой — теории, согласно которой излучение и поглощение света происходит порциями — квантами. В дальнейшем А. Эйнштейн выдвинул гипотезу о том, что не только поглощение и излучение, а также распространение света происходит дискретно, порциями. Кванты света получили название фотонов.  [c.338]


Известны различные виды излучения вещества — отражение и рассеяние света, тепловое излучение, излучение заряженных частиц при их ускоренном или заторможенном движении и т. д. Однако существует излучение, отличное от этих видов как по характеру возбуждения и протекания, так и по характеристикам самого излучения (спектральному составу, поляризации и т. д.). К таким видам излучения относится свечение окисляющегося в воздухе фосфора, свечение газа при прохождении через него электрического тока, свечение тел после облучения их светом, свечение специальных экранов при ударе о них электронов (экраны телевизоров, осциллографов и др.) и т. д. Все эти виды излучения, как увидим дальше, обусловлены переходом частиц (атомов, молекул, ионов и других более сложных комплексов) из возбужденного состояния в основное и называются люминесценцией. Понятие люминесценция было введено впервые Видеманом в 1888 г. Существенный вклад в развитие учения о люминесценции был сделан советской школой физиков, во главе которой стоял акад. С. И. Вавилов.  [c.356]

В этой вводной главе прежде всего необходимо ввести основные определения и охарактеризовать свойства рассматриваемых волн оптического диапазона. Изложение начинается с анализа уравнений Максвелла и вытекающего из них волнового уравнения. При этом отмечается, что система уравнений Максвелла является следствием законов электрического и магнитного полей, обобщенных и дополненных гениальным создателем этой теории. Таким образом, сразу вводится понятие электромагнитной волны, возникающей в качестве решения волнового уравнения, и проводится рассмотрение ее свойств. При этом выявляется кажущееся противоречие между результатами экспериментальных исследований и решением волнового уравнения в виде монохроматических плоских волн. Данная ситуация может быть понята с привлечением принципа суперпозиции и спектрального разложения, базирующегося на теореме Фурье. В рамках этих представлений можно истолковать особенности распространения свободных волн в различных средах и определить понятия энергии и импульса электромагнитной волны, формулируя соответствующие законы сохранения. Рассмотрение излучения гармонического осциллятора, которым заканчивается глава, позволяет принять механизм возникновения излучения, облегчает модельные представления о законах его распространения и открывает возможность рассмотрения более сложных условий эксперимента, которое проводится в последующих главах.  [c.15]

Более серьезен вопрос о возможности создания монохроматического излучения. Конечно, понятие монохроматической волны вида (1.23) несколько идеализировано. Монохроматическая волна рождается гармоническим колебанием, которое длится вечно, тогда как любое реальное колебание, график которого представлен на рис. 1.8, не является гармоническим, но чем больше I <2 по сравнению с периодом колебаний Т, тем в большей степени этот импульс походит на монохроматическую волну. Легко показать, что чем больше т, тем меньше интервал частот Ду, соответствующий данному излучению [Av 1/т, см. (1.6)].  [c.33]

В последующие несколько лет исчезли всякие сомнения в значении идей о квантовании энергии и справедливости формулы Планка, которая была использована в самых различных областях физики. Более того, наличие этой формулы стимулировало введение новых понятий, значение которых проявилось лишь в последующие десятилетия. Для иллюстрации этого приведем основы вывода формулы Планка, который был предложен Эйнштейном в 1916 г. В этом выводе было впервые введено понятие вынужденного излучения, играющее основную роль в механизме генерации мазеров и лазеров.  [c.426]

Этот вывод формулы Планка имеет большое познавательное значение. Для того чтобы получить ее таким способом, потребовалось ввести новое понятие вынужденного излучения. Справедливость окончательного выражения доказывает существование этого излучения. Это приходится специально отметить, так как долгое время попытки экспериментального обнаружения вынужденного излучения в оптическом диапазоне не приводили к успеху. В то же время в радиодиапазоне превалирует вынужденное излучение, а спонтанное излучение играет роль шума.  [c.429]

Для количественной оценки действия, производимого любым ионизирующим излучением в любом облученном веществе, пользуются понятием поглощенной дозы.  [c.215]

Наблюдениями установлено, что одинаковые количества энергии различных видов излучения (у-лучи, а- и р-частицы, нейтроны), поглощенные при одинаковых условиях облучения в живой ткани, производят различное биологическое действие. Поэтому вводится понятие биологического эквивалента рентгена (бэр) и понятие относительной биологической эффективности (ОБЭ).  [c.217]

Светимость — очень удобное для многих расчетов понятие. Мы с ним встретимся также в теории излучения.  [c.49]

Проведенные рассуждения, основанные на понятии частичной когерентности световых волн, проходящих через щели 51, объясняют, разумеется, те же явления, о которых шла речь в начале параграфа, — уменьшение видимости интерференционных полос при увеличении угловых размеров источника света. Различие состоит лишь в способе рассуждений. В начале параграфа находилась интерференционная картина, обусловленная светом, испускаемым малым элементом протяженного источника света, и суммировались интенсивности в интерференционных картинах, вызванных светом от разных участков этого источника уменьшение видимости полос в результирующей картине возникало при этом способе анализа как следствие различного положения полос для разных участков источника. Во втором подходе предварительно рассматриваются световые колебания, происходящие в щелях 5,, 5а и обусловленные излучением всего протяженного источника света. Эти колебания оказываются не полностью когерентными, и уменьшение видимости полос интерпретируются как проявление этой частичной когерентности колебаний в 5х, 5 . Из сказанного ясно, что исходной причиной уменьшения видимости интерференционных полос служит конечный угловой размер источника света, и два сравниваемых способа рассуждений отличаются лишь тем, на каком этапе производится суммирование действий различных участков источника в первом способе это суммирование проводится на последнем этапе, т. е. в интерференционной картине, а во втором способе — на промежуточном этапе, в плоскости, где расположены щели 51, 5г.  [c.86]


В этой системе Е — энергия собственного излучения первого тела на второе, E-i второго на первое. Ввиду малого расстояния между ними практически все излучение каждой из рассматриваемых поверхностей попадает на про-тиво[юложную. Воспользуемся понятием эффекти[ ного излучения Е-, , представленного выражением (11.3). Для непрозрачного тела (D = 0 и R— —A) выражение (11.3) запишется в виде ,ф = = +, 41--4).  [c.92]

Не все тепло сварочной дуги идет на нагре)в изделия часть тепла затрачивается на нагревание нерасплавив-шейся части электрода, часть — на излучение в окружающее пространство, некоторое количество тепла теряется с каплями электродного металла при его разбрызгивании. Поэтому вводят понятие эффективной тепловой мощности дуги.  [c.20]

Все реальные тела, используемые в технике, не являются абсолютно черными и при одной и той же температуре излучают меньше энергии, чем абсолютно черное тело. Излучение реальных тел также зависит от температуры и длины волны (при /lx onst[c.463]

Переход от черного тела к понятию оптически плотного потока, сформулированному Росселендом [658], был исследован в работе [811]. Уравнения пограничного слоя в среде, поглощающей тепловое излучение, были выведены в работах [100, 852]. Из других работ, посвященных пограничному слою излучающей среды (только газ), отметим работы Хоува, исследовавшего химически равновесный ламинарный пограничный слой в области торможе-24-517  [c.369]

Реальное тело отличается от абсолютно черного тем, что оно не только поглощает, но и отражает и пропускает лучистую энергию. При введении понятий излучательная способность и степень черноты мы опирались на интегральное излучение нечерного тела, т. е.  [c.18]

Когда кривая спектрал энергии тела, обладающей лучения, подобна кривой излучение первого назыв коэффициенты е(2, Т)=е = сопз1 играют роль масштабного множителя при сравнении серого излучения с излучением абсолютно черного тела при той же температуре (рис. 1-5). Значения Ямакс для черного и для серого тел равны. Введение понятия серое тело значительно расширяет возможности использования законов излучения, сформулированных для абсолютно черного тела, в практических расчетах, что доказывают, например, (1-19) —(1-21).  [c.19]

Теория Планка, хотя и противоречила духу классической физики, подтверждалась опытными фактами и смогла решить задачу теплового излучения абсолютно черных тел. Следует отметить, что квантовая теория Планка совершенно не нуждается в понятии эфирной среды . Таким образом, к началу XX в. наряду с электромагнитной теорией возродилась корпускулярная теория света, но, безусловно, отличЕ1ая от корпускулярной теории Ньютона.  [c.8]

Потоки заряженных частиц в космическом пространстве подвержены сильным пространственно-временным вариациям. Особенно это относится к частицам радиационных поясов Земли, плотность потока которых изменяется в десятки тысяч раз в зависимости от расстояния от Земли и испытывает определенные изменения во времени. Значительным пространственно-временным изменениям подвержены потоки солнечного корпускулярного излучения. В связи с пространственно-временными вариациями космических излучений уровень радиации в обитаемых отсеках космического корабля может изменяться во время полета в широком диапазоне значений. При этом характеристики солнечного корпускулярного излучейия не могут быть точно предсказаны заранее (на большой срок и с высокой надежностью). В связи с этим в оценках радиационной обстановки приходится применять статистические подходы, используя понятие риск облучения .  [c.269]

По аналогии с понятием ксоффициента ослабления излучения ь веществе, используемого обычно в физике защиты, введем эффективный коэффициент ослабления  [c.290]

В заключение стоит указать, что и по поляризации излучение лазера отличается от излучения обычных источников света. Физика процессов в лазере связана не со случайным началом колебаний (спонтаяное излучение , а с некочорыми более сложными явлениями, обусловленными взаимодействием электромагнитного излучения и атомных систем. Такое вынужденное излучение (это понятие было введено Эйнп1тейном еще в 1916 г. см, гл. 8) должно характеризоваться вполне определенной поляризацией. При работе со специально изготовленными лазерами, у которых окна разрядной трубки перпендикулярны ее оси, можно наблюдать, как чер( з определенное время At один вид. . .тлиптической поляризации переходит в другой. Но обычно окна разрядной трубки, находящейся внутри резонатора, располагают под некоторым углом к ее оптической оси (угол Брюстера), что (см. гл. 2)  [c.37]

Если мы имеем дело только с монохроматичеким излучением, то проблема полностью исчерпана и понятия фазовой скорости достаточно для описания всех явлений, связанных с распространением электромагнитных волн. Но на самом деле радиация распространяется в виде импульсов, представляющих собой совокупность различных монохроматических волн. При движении в реальных средах импульс деформируется и невозможно охарактеризовать происходящие при этом сложные процессы лишь одним значением и = uj/k. Приходится вводить новые, более сложные понятия. Проанализируем экспериментальные данные.  [c.45]

При этом искажается форма импульса и изменяется частота, соответствующая максимуму спектра В процессе расгфосгра -нения импульс может совершенно изменить свою исходную форму. Физические причины таких искажений многообразны так, например, в активной среде лазера наибольшее усиление происходит в передней части импульса, что должно приводить к дополнительному сдвигу максимума и соответственному увеличению групповой скорости, определяемой по указанной выше формальной схеме. Однако такая внутренняя перестройка импульса не может быть использована для передачи сигнала. В связи с этим нужно весьма критически относиться к иногда появляющимся публикациям, в которых утверждается, что групповая скорость лазерного излучения может быть больше скорости света в вакууме. Нужно ясно представлять себе, что в этом случае понятие групповой скорости теряет свой первоначальный смысл и величина U уже не определяет скорость распространения сигнала, которая, согласно специальной теории относительности, никогда не может быть больше скорости света в вакууме.  [c.53]

Возникшая как самостоятельный раздел оптики в начале 60-х годов (после появления лазеров) нелинейная оптика объединяет обширный круг явлений, обусловленных зависимостью параметров среды [коэффициенты поглощения k(v) и преломления n(v)] от интенсивности проходящего света. Оставим пока в стороне вопрос о нарушениях закона Бугера, связанных с у1сазанной зависимостью коэффициента поглощения k v) от напряженности электрического поля, и обратим внимание на свойства коэффициента преломления n(v), проявляющиеся в сильных полях. В таком изложении основ нелинейной оптики легче будет отделить классические эффекты (самофокусировка излучения, преобразование частоты света со всеми вытекающими отсюда последствиями) от квантовых, рассмотрение которых требует введения понятия фотона и других, более сложных представлений (см. 8.5).  [c.168]


В 5.6 описаны опыты, в которых исследовалась зависимость видимости интерференционной картины от степени монохрома-гичности излучения, используемого для освещения интерферометра Майкельсона. Эти классические опыты позволили внести простейшие понятия теории когерентности и явились базой дальнейшего развития методов спектроскопии (Фурье-спектроскопия и др.). В последующем изложении мы подробно рассмотрим физический смысл понятий временной и пространственной когерентности, играющих большую роль при выборе оптимальных условий эксперимента по интерференции различных световых потоков.  [c.185]

Для разделения спектров разных порядков применяют различные приемы (исполь. )уют стеклянные фильтры, селективные приемники излучения и т.д.). С равнительно легко отделить инфракрасное излучение от видимого или видимое от ультрафиолетового, но если разность длин волн, соответствующих соседним порядкам дифракции, невелика (а так будет всегда при использовании вькчлшх порядком), го приходится применять достаточно сложную схему монохроматнзации излучения. Поэтому (аналогично тому, как делалось в многолучевой интерферометрии) целесообразно ввести понятие области свободной дисперсии  [c.322]

Остановимся подробнее на понятии теплового равновесия, очень важном для последующего изложения, в значительной мере связанного с изучением энергетики п юцессов излучения и поглощения света. Для этого полезно обратиться к термодинамическому рассмотрению явлений внутри замкнутой полости. Пусть стенки этой полости полностью отражают падающий на них свет. Поместим в полость какое-либо тело, излучающее световую энергию. Внутри полости возникнет электромагнитное поле и в конце концов ее заполнит излучение, находящееся в состоянии теплового равновесия с телом. Равновесие наступит и в том случае, когда каким-либо способом нацело устранится обмен теплом исследуемого тела с окружающей его средой (например, будем проводить этот мысленный опьгг в вакууме, когда отсутствуют явления теплопроводности и конвекции). Лишь за счет процессов испускания и поглощения света обязательно наступит равновесие излучающее тело будет иметь температуру, равную температуре электромагнитного излучения, изотропно заполняющего пространство внутри полости, а каждая выделенная часть поверхности тела будет излучать в единицу времени столько энергии, сколько она поглощает. При этом равновесие должно наступить независимо от свойств тела, помещенного внутрь замкнутой полости, влияющих, однако, на время установления равновесия. Плотность энергии электромагнитного поля в полости, как показано ниже, в состоянии равновесия определяется только температурой.  [c.400]

Заключая этот краткий обзор оптических методов измерения температуры раскаленных тел, отметим еще раз, что в общем случае все три измеренш.ю величины (Т р .д, 7 ярк) могут бьггь различными и само понятие истинной т( мпературы будет довольно неопределенн1,1м, особенно если вспомнить, что все эти методы фактически основаны на использовании законов, применимых литиь к излучению черных тел. Поэтому представляют-  [c.414]

В таких экспериментах широко применяется понятие оптической накачки, введенное А.Кастлером в 50-е годы. Это явление, связанное с опустошением нижнего (основного) уровня и переходом атомов на какой-либо третий (промежуточный) уровень, широко используется в спектроскопии и лазерной физике, так как здесь создается значительное превышение числа атомов в более высокоэнергетическом состоянии (рис. 8.28), создающее предпосылки для возникновения лазерного излучения.  [c.450]

Можно также заметить, что осмыслить понятие вынужденного излучения с позиций какой-либо одной теории света достаточно трудно. Для того чтобы описать усиление сигна та (( отрицательное поглощение-)), удобно по.тьзоваться терминами квантовой оптики, сводя вопрос к рождению новых фотонов при прохождении светом активной среды. Но при последующем описании свойств таких фотонов удобно пользоваться терминами и понятиями волновой оптики, указав, что фазы вторичных волн жестко связаны (полностью скоррелированы).  [c.462]

Параллельно с этим идет изучение космических лучей и тех процессор, которые порождаются в веществе частицами космического излучения. Разрабатывается метод камеры Вильсона, помещенной 3 магнитное поле (П. Л. Капица и Д. В. Скобельцьш), и метод ядерных фотоэмульсий (Л. В. Мысовский, А. П. Жданов). В 1928 г. П. Дирак создает релятивистскую теорию электрона, вводится понятие античастицы. Анализируя опытные данные по р-распаду атомных ядер, В. Паули в 1931 г. выдвигает гипотезу  [c.11]

Следует отметить, что мы ввели понятие монохроматической волны на примере плоской волны, для которой амплитуда а не зависит от координат. Однако это ограничение несущественно, а волна остается монохроматической при любом а, если только а не зависит от времени а — I х, у, г). Так, например, в 6 мы будем иметь дело с монохроматической сс )ерической волной, амплитуда которой убывает по мере удаления от точки излучения.  [c.36]

Знание яркости существенно необходимо при исследовании само-светящихся предметов, в частности, источников света. Наш глаз реагирует непосредственно на яркость источника (см. 10). Понятие яркости используется и в теории излучения (см. гл. XXXVI).  [c.48]


Смотреть страницы где упоминается термин 37 — Понятие Уф-излучения : [c.13]    [c.135]    [c.120]    [c.128]    [c.6]    [c.89]    [c.401]    [c.406]    [c.461]    [c.462]    [c.47]   
Приборы для неразрушающего контроля материалов и изделий (1976) -- [ c.177 ]



ПОИСК



Лучистый теплообмен Основпые понятия и физические основы теплового излучения

Метод расчета теплообмена излучением между объемом газа и черной граничной поверхностью, основанный на понятии о средней длине иути луча

Понятие о селективном и сером излучении

Природа теплового излучения. Основные понятия

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ И ЛУЧИСТЫЙ ТЕПЛООБМЕН , В СРЕДЕ Введение и основные понятия

ФИЗИЧЕСКИЕ ОСНОВЫ ИЗЛУЧЕНИЯ Основные понятия теории теплового излучения

Физические основы излучения Основные понятия и законы излучения



© 2025 Mash-xxl.info Реклама на сайте