Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Неравномерность гидравлическа

Напорная трубка 199, 232 Неравномерность гидравлическая 212  [c.316]

Для прямоточных котлоагрегатов испытания испарительных поверхностей предусматривают определение гидродинамических характеристик, тепловосприятия труб и панелей и установление коэффициента неравномерности гидравлической и тепловой разверки.  [c.60]

В отличие от аппаратов типа газовзвесь в регенераторах типа слой сыпучая насадка движется при объемных концентрациях порядка 0,3—0,6 м 1м . Это обуславливает высокое гидравлическое сопротивление (фильтрационный режим движения газа) пониженную интенсивность теплообмена между газом и насадкой (радиация, как правило, пренебрежимо мала) зачастую неравномерное распределение скоростей компонентов максимально высокую компактность расположения поверхности нагрева — насадки и поэтому уменьшение протяженности камеры, увеличение времени пребывания насадки и соответственно снижение требований к ее термостойкости использование более крупной (на порядок) насадки и незначительная опасность ее уноса весьма низкие скорости движения насадки значительное количество насадки и соответственно увеличенный вес теплообменника.  [c.361]


Ввиду пониженной технологической пластичности высоколегированных сталей и труднодеформируемых сплавов их предпочтительнее штамповать в закрытых штампах. В этом случае схема неравномерного всестороннего сжатия проявляется полнее и в большей степени способствует повышению пластичности, чем при штамповке в открытых штампах. По этой же причине наиболее предпочтительна штамповка выдавливанием. Сплавы, у которых пластичность понижается при высоких скоростях деформирования (титановые, магниевые и др,), штампуют на гидравлических и кривошипных прессах. При этом для уменьшения остывания металла и повышения равномерности деформации штампы подогревают до температуры 200—400 °С. Поковки из некоторых труднодеформируемых сплавов получают изотермической штамповкой.  [c.97]

В некоторых случаях, при ограниченности размеров и невозможности устройства в коротких диффузорах (рис. 1.29, а) разделительных стенок или направляющих лопаток (например, если на них будут осаждаться взвешенные в потоке твердые частицы), можно применять ступенчатые. диффузоры (рис. 1.29, о), состоящие из сравнительно короткого плавного участка с небольшим углом расширения и участка с внезапным расширением сечения. Эти диффузоры создают примерно такую же неравномерность потока, что и обычные диффузоры той же длины с большими углами расширения, но имеют значительно меньшее гидравлическое сопротивление. Распределение скоростей за ступенчатыми диффузорами получается даже несколько более благоприятным, поскольку оно симметрично по сечению (рис. 1.29, в), при. этом облегчается выравнивание потока по всему сечению с помощью сеток, решеток или другого сопротивления, равномерно распределенного по сечению.  [c.35]

Последние формулы в пределах применимости данной гидравлической теории дают связь между коэффициентом неравномерности перед решеткой, заданной степенью неравномерности за ней, и коэффициентом сопротивления решетки также и для случая, когда нет четко выраженных границ струи ни в сечении О—О ни в сечении 2—2, т. е. для потока во всем сечении канала (рис. 4.6).  [c.104]

Преобразование первоначального профиля скорости в заданный неравномерный может быть достигнуто с помощью не только неоднородных плоских решеток, т. е. плоских решеток переменного по сечению сопротивления, но и пространственных решеток с различной кривизной поверхности. При решении этой задачи предполагается, что малы не только отклонения (возмущения) скоростей от равномерного их распределения по сечению, но и степень неоднородности сопротивления решетки и кривизна ее поверхности, т. е. гидравлические и геометрические характеристики изучаемой решетки мало отличаются от этих характеристик для однородной и плоской решетки. Это допущение позволяет линеаризовать полученные уравнения и основной результат представить в виде линейной связи между характеристиками потока (профилями скорости) до решетки и за ней и характеристиками решетки.  [c.121]

Неоднородность течения за распределительным устройством практически не зависит от неравномерности поля скоростей в подводящем патрубке. Исследовались прямые трубы, колено (г/Оа = 0 и г/О = 0,5) и закрученный поток. Коэффициент гидравлического сопротивления I,. =  [c.292]


Для аппаратов наиболее типичны механические и тепловые нагрузки, а для элементов электроприборов - электрические и тепловые. Укрупненно виды нагрузок подразделяют на механические, электрические, акустические, тепловые, гидравлические (пневматические), радиационные, электромагнитные, магнитные, биологические, климатические и химические. Нефтехимические аппараты одновременно подвергаются влиянию, как правило, нескольких видов нагрузок. Действие различных видов нагрузок взаимозависимо. Так, элект]зи -ческие нагрузки деталей электроприборов, как правило, являются следствием появления тепловых нагрузок. В свою очередь, сравнительно большая тепловая инерция материалов приводит к неравномерному распределению температуры по отдельным конструктивным элементам аппаратов, что является причиной неравномерной деформации и, как следствие этого, появления механических нагрузок.  [c.72]

При неравномерном падении напора вводят понятие гидравлического уклона в рассматриваемом сечении потока в виде  [c.63]

Если пренебречь гидравлическими сопротивлениями и неравномерностью распределения скоростей в струе, т. е. принять = 0 и а = 1, что характерно для идеальной жидкости, то ф = 1 и получим известную формулу Торичелли  [c.112]

Рис. 6.14. Экспериментальные зависимости гидравлического коэффициента трения Я от числа Рейнольдса Re и относительной гладкости стенок для промышленных труб с неравномерной шероховатостью Рис. 6.14. Экспериментальные зависимости гидравлического коэффициента трения Я от числа Рейнольдса Re и относительной гладкости стенок для промышленных труб с неравномерной шероховатостью
Рис. С7. Экспериментальные графики зависимости коэффициента гидравлического трения X от числа Рейнольдса Re и гладкости /Л стенок для промышленных труб с неравномерной шероховатостью А Рис. С7. Экспериментальные графики зависимости коэффициента гидравлического трения X от числа Рейнольдса Re и гладкости /Л стенок для промышленных труб с неравномерной шероховатостью А
Для промышленных труб с неравномерной шероховатостью в формулы табл. 3 следует подставлять Д , значение которой можно найти в гидравлических справочниках.  [c.183]

В зависимости от изменения гидравлических параметров движение жидкости в потоке конечных размеров может быть равномерным и неравномерным. Равномерное — это такой вид установившегося движения, при котором гидравлические параметры остаются неизменными по длине. Неравномерное — это вид установившегося движения, при котором параметры потока по длине переменны. Пример равномерного движения — поток в трубе круглого сечения или в русле канала с призматическим сечением, а неравномерного — на расширяющихся или сужающихся участках труб или каналов.  [c.25]

Так как параметры равномерного потока по длине его не меняются, то гидравлический i, пьезометрический ip и геометрический уклоны равны. При неравномерном движении  [c.67]

Входящий в уравнение Бернулли коэффициент а, учитывающий неравномерность распределения скоростей по сечению, зависит от числа Ке или коэффициента гидравлического трения X и может быть найден из выражения а=1+2,65Х. С возрастанием числа Ке коэффициент а уменьщается и приближается к единице, поэтому при турбулентном движении обычно его и принимают равным единице.  [c.46]

При неравномерном плавно изменяющемся движении воды в открытом русле, т. е. когда давления в поперечных сечениях потока распределены по гидростатическому закону, пьезометрическая линия, так же, как и при равномерном движении, совпадает со свободной поверхностью потока. При этом гидравлический  [c.90]

К наиболее важным случаям неравномерного движения воды в открытом русле следует отнести явления подпора, спада и гидравлического прыжка.  [c.91]

УСТАНОВИВШЕЕСЯ НЕРАВНОМЕРНОЕ ДВИЖЕНИЕ ВОДЫ В ОТКРЫТЫХ РУСЛАХ. ГИДРАВЛИЧЕСКИЙ ПРЫЖОК  [c.182]

Гидравлический уклон J можно найти из формулы Шези, если принять допущение, что потери напора при неравномерном движении выражаются теми же зависимостями, что и в случае равномерного движения.  [c.185]

Какие приняты предположения относительно гидравлических сопротивлений при равномерном и при неравномерном движении, когда рассматривается плавно изменяющееся движение  [c.18]

При неравномерном движении пьезометрический уклон не совпадает с гидравлическим. В замедленном потоке (при расширении трубы) пьезометрический уклон в некоторых случаях может оказаться положительным, т. е. пьезометрическая линия не понижается, а повышается в процессе движения.  [c.135]

Непосредственно на энергообъектах аварийное питание резервируется подачей технической воды из сети пр0М1В0д0Снабжения при пониженных параметрах работы. В случае невозможности подобного резервирования предусматривается подача от центральной установки питательной воды по двум ниткам трубопроводов с возможностью пропуска через каждый из них номинального расхода воды. Все насосные группы основного тракта центральной водоприготовительной установки должны иметь, как правило, три агрегата, каждый из которых может нести максимальную производительность соответствующей фазы обработки воды. Для заводов с резко выраженной неравномерностью гидравлической нагрузки в зимний и летний периоды один из агрегатов устанавливается с расчетом на пониженный ( летний) расход воды.  [c.303]


Конструкции горизонтального и вертикального фильтров принщшиально не отличаются. Горизонтальные фильтры имеют большую рабочую поверхность, но процессы промывки и гидравлической перегрузки фильтрующего материала в них затруднены из-за неравномерного гидравлического сопротивления загрузки.  [c.57]

Кроме рассмотренных специфических недостатков плоских (тонкостенных) решеток следует отметить трудности их применения, например из-за сложности стряхивания пыли, осаждающейся на решетках в газоочистных аппаратах (особенно при горизонтальном расположении решеток), засорения решеток пылью в случае влажного газа и липкой пыли, а следовательно, усиление неравномерности распределения концентрации частиц, взвешенных в потоке при его растекании по фронту решетки, увеличения гидравлического сопротивления аппарата и т. п.  [c.193]

Для насоса, если пренебречь сжимаемостью жидкости в полостях насоса, неравномерностью подачи из-за кинематики, влиянием индикаторных характеристик, можно использовать эквивалентную схему, показанную на рис. 2.25. Здесь зависимый источник момента силы М и момент инерции J представляет механическую часть насоса, зависимый источник Qm и сопротивление утечки Ry — гидравлическую часть. Связь между подсистемами — гираторного типа. Поскольку применяются источ-  [c.106]

При нроектировании эжектора важно правильно выбрать длину камеры смешения, обеспечивающую достаточно полное выравнивание поля скорости в поперечном сечении потока. Расчет показывает, что при неполном смешении, когда коэффициент поля на выходе из камеры т>1 (см. 2), эффективность эжектора ухудшается при заданном давлении на выходе р4 снижается разрежение на входе в камеру, падает коэффициент эжекции и выигрыш в тяге. Если не учитывать трения о стенки, то максимальный эффект соответствует т -> 1, т. е. неограниченному увеличению длины камеры. В действительности, однако, существует конечное оптимальное значение длины камеры, так как при малой неравномерности поля скорости полезный эффект, получаемый за счет дальнейшего выравнивания, не компенсирует возрастающих гидравлических потерь. Экспериментально это определяется по наличию максимума статического давления смеси на некотором конечном расстоянии от входа в  [c.564]

Естественные русла (равнинные и горные реки, руньн) отличаются от каналов весьма неиравнльион формой поперечных сечений, резкой изменяемостью уклона дна и извилистостью в плане в результате образования излучин. Продольный профиль водной поверхности непрерывно меняется. Резкие изменения гидравлических элементов реки по длине, вызванные указанными факторами, наличием плесов II перекатов, изменяемостью шероховатости по д,лине и глубине потока, придают последнему, даже в условиях бытового режима, неравномерный характер.  [c.185]

Графическая зависимость Q = / (ф) насоса называется графиком подачи. На рис. 11.5 представлены такие графики подачи. Из них видно, что подача насоса неравномерна. Это вызывает гидравлические удары, опасные вибрации и неравномерность движения исполнительных органов машин. Поэтому стремятся выровнять график подачи, приблизив его к прямой Q p. определяемой как сторона прямоугольника, равновеликого по площади фигуре под полусинусоидами. Расчетным путем (без учета объемных потерь) Q(,p определяется по уравнению (11.1).  [c.163]

Если распределение скоростей в живом сечении неравномерное, то вводя в рассмотрение среднюю скорость, определяемую отношением v = Q/w, получим пнгроко употребляемую в технических расчетах гидравлическую форму уравнения неразрывности  [c.37]

Большой вклад в развитие гидравлики внесли советские ученые А. Н. Крылов (теория плавания корабля), А. Н. Колмогоров (теория турбулентности), Н. Н. Павловский (теория неравномерного движения и фильтрации жидкости) В. Г. Шухов (гидравлический расчет магистральных нефтепроводов), И. И. Куколев-ский (теория машиностроительной гидравлики) и многие другие.  [c.260]

Наблюдается как равномерное, так и неравномерное движение грунтовых вод. Движение подземных вод может быть неустано-вившимся и установившимся. Грунтовый поток называют неуста-новившимся, если скорость фильтрации, глубина и другие характеристики потока изменяются с течением времени в различных точках пространства, занятого потоком. Иными словами, гидравлические характеристики потока зависят как от координат пространства, так и от времени г = р(х, у, г, 1). Грунтовый поток называется установившимся, если его гидравлические характеристики зависят только от координат пространства и не зависят от времени.  [c.132]

Первые шесть глав книги (введение, гидростатика, основы гидродинамики, гидравлические сопротивления, истечение жидкости через отверстия и насадки, движение жидкости в напорных трубопроводах) и тринадцатая глава составлены проф. А. А. Угинчусом. Последующие шесть глав (равномерное движение жидкости в открытых руслах, теория установившегося неравномерного движения жидкости в открытых руслах, водосливы и гидравлика дорожных труб и малых мостов, сопряжение бьефов и гидравлический расчет косогорных сооружений, теория моделирования и движение грунтовых вод) написаны доц. Е. А. Чугаевой.  [c.3]

Если простой трубопровод состоит из труб разных диаметров, то и в этом случае вся разность напора затрачивается на преодоление сопротивления движению. Но общие потери = Н распределяются неравномерно по длине трубопровода, а пьезометрическая линия представляет собой ломаную линию. Для определения потерь энергии (напора) на отдельных участках труб, а также в других гидравлических расчетах трубопроводоп широко используется понятие о пропускной способности или о расходной характеристике труб. Расход жидкости при равномерном движении определяется по формуле  [c.164]

При выводе уравнении (376) нами были сделаны два допущения 1) наличие > рабочего колеса бесконечного числа лопастей 2) отсутствие гидравлических потерь энергии в рабочем колесе насоса. Эти допущения приводят к тому, что теоретический напор, определяемый по формуле (376), оказывается больше напора, развиваемого рабочим колесом насоса. Причиной этого является неравномерность распределения скоростей в ка-.налах между лопастями рабочего колеса в результате вращательного движения жидкости и различие относительных скоростей по обе стороны лопасти.  [c.240]

Образующийся гидравлический прыжок может быть надвинутым, отогнанным или начинаться непосредственно у конечного сечения водоската. Поскольку ширина отводящего канала (русла) обычно больше, чем ширина быстротока в конце его транзитной части, устраивают расширяющийся переходный участок. При надвинутом на водоскат гидравлическом прыжке, полностью размещенном на транзитной части, на переходном участке будет происходить неравномерное движение в непризматическом АЫА1> 0) русле, причем растекающийся поток — в спокойном состоянии.  [c.252]

Нарушение соосности йасоса и привода, при этом насос не пускается в работу насос не засасывает жидкости (причиной этого могут быть засорение фильтрующей сетки, попадание воздуха в насос, неисправность обратного клапана на всасывающей линии насоса и т. д.) насос при полном открытии напорной задвижки не дает необходимой подачи (это может быть следствием засорения напорной магистрали, а также увеличения гидравлических потерь в насосе при его износе, засорении или повреждении рабочего колеса, падении напряжения электропитания двигателя) повышенные вибрации, удары и шумы могут возникнуть вследствие засорения или неравномерного износа лопастей рабочих колес, кавитации, слабого крепления подводящей и отводящей магистрали и других причин..  [c.201]


Развитие технической механики жидкости (гидравлики) в XIX в. за рубежом. Зародившееся во Франции техническое (гидравлическое) направление механики жидкости быстро начало развиваться как в самой Франции, так и в других странах. В этот период в той или другой мере были разработаны или решены следующие проблемы основы теории плавно изменяющегося неравномерного движения жидкости в открытых руслах (Беланже, Кориолис, Сен-Венан, Дюпюи, Буден, Бресс, Буссинеск) вопрос о гидравлическом прыжке (Бидоне, Беланже, Бресс, Буссинеск) экспериментальное определение параметров, входящих в формулу Шези (Базен, Маннинг, Гангилье, Куттер) составление эмпирических и полуэмпирических формул для оаределения гидравлических сопротивлений в различных случаях (Кулон, Хаген, Сен-Венан, Пуазейль, Дарси, Вейсбах, Буссинеск) открытие двух режимов движения жидкости (Хаген, Рейнольдс) получение так называемых уравнений Навье — Стокса, а также уравнений Рейнольдса на основе использования модели осредненного турбулентного потока (Сен-Венан, Рейнольдс, Буссинеск) установление принципов гидродинамического подобия, а также критериев подобия (Коши, Риич, Фруд, Гельмгольц, Рейнольдс) основы учения о движении грунтовых вод (Дарси, Дюпюи, Буссинеск) теория волн (Герстнер, Сен-Венан, Риич, Фруд,  [c.28]

Б. А. Бахметев (1880-1951) - русский ученый, инженер путей сообщения — работая в Петербургском политехническом институте, заложил основы современной русской гидравлической школы, опубликовав ряд книг, в которых осветил различные разделы гидравлики. Б. А. Бахметев решил в достаточно общей форме задачу об интегрировании дифференциального уравнения неравномерного движения в призматических руслах.  [c.30]


Смотреть страницы где упоминается термин Неравномерность гидравлическа : [c.238]    [c.892]    [c.892]    [c.274]    [c.146]    [c.98]    [c.27]    [c.183]    [c.109]    [c.272]    [c.334]   
Испытание и наладка паровых котлов (1986) -- [ c.212 ]



ПОИСК



Неравномерность



© 2025 Mash-xxl.info Реклама на сайте