Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость, влияние на разрушени

Более плотные защитные пленки на поверхности стали в меньшей степени вызывают отслаивание покрытия вблизи прокорродировавшего участка, и скорость разрушения системы уменьшается. Примеси в сталях оказывают влияние на разрушение стали с покрытием.  [c.61]

Закономерности образования и продвижения магистральных трещин наиболее полно характеризуют процесс разрушения стекол и ситаллов — скорость разрушения, влияние на разрушение размеров и формы образцов, продолжительности нагружения, вида напряженного состояния (рис. 70—72 и табл. 5).  [c.84]


Влияние скорости деформации на форму кривых напряжение— деформация показано на рис. 5.7. Такого влияния скорости на характер деформационных кривых следовало ожидать, исходя из принципа температурно-временной суперпозиции. С повышением скорости деформации модуль упругости и предел текучести или разрушающее напряжение стеклообразных полимеров возрастают, а удлинение при разрыве уменьшается [И—18]. Удлинение при разрыве эластомеров может возрастать при повышении скорости деформации [19—21 ]. Влияние скорости деформации на разрушение очень хрупких полимеров обычно мало, однако для жестких пластичных материалов или эластомеров изменение скорости деформации на несколько десятичных порядков может давать значительные эффекты. Предел текучести возрастает прямо пропорционально логарифму скорости деформации в соответствии с уравнением  [c.157]

Аналогичные тенденции влияния скорости деформирования на характеристики разрушения наблюдаются, как установлено многочисленными экспериментальными исследованиями [199, 240, 256, 269, 304—306, 310, 334, 341, 392, 394, 433], для различ-  [c.152]

Изложенные здесь основные закономерности межзеренного разрушения в условиях длительного статического и циклического нагружений положены в основу рассматриваемой ниже физико-механической модели. Анализ влияния скорости деформирования на критические параметры, контролирующие предельное состояние материала, может быть выполнен исходя из схемы, приведенной на рис. 3.2. Для этого значения критической деформации е/ или долговечности Nf при межзеренном накоплении повреждений, рассчитанные по предлагаемой ниже модели, должны сравниваться с аналогичными параметрами, полученными в предположении внутризеренного характера зарождения макроразрушения по одной из ранее разработанных методик (см. гл. 2).  [c.155]

Марголин Б. 3., Швецова В. А. Влияние скорости деформирования на характер разрушения при статическом и циклическом нагружении. Со-общ. 1. Формулировка общих подходов//Пробл. прочности.— 1991.— № 2.— С. 3—14.  [c.371]

Рис. 1.6. Влияние скорости деформирования на сопротивление деформациям и разрушению Рис. 1.6. Влияние скорости деформирования на сопротивление деформациям и разрушению
В работе [31] была предложена физико-математическая модель процесса атмосферной коррозии и оценены скорости коррозионного разрушения металлов и покрытий на их основе с учетом факторов, оказывающих наибольшее влияние на процесс коррозии температуры, продолжительности существования фазовой пленки на металлах, поверхностной концентрации хлоридов и концентрации сернистого газа, а также были получены значения коэффициентов коррозии различных металлов в атмосферных условиях.  [c.51]


Влияние взвешенных частиц на разрушение поверхности оборудования проявляется при больших скоростях потока и их содержании, превышающем критическую концентрацию (рис. 62).  [c.153]

В книге помещены статьи по теории обработки металлов давлением и теории пластической деформации и разрушения металлов. Рассмотрены новые методы исследования пластичности, влияние на пластичность скорости деформации, температуры, химического состава, напряженного состояния, условий нагрева и т. п. Значительное внимание уделено течению металла и распределению деформаций материала, заключенного в оболочку, влиянию прокладок и формы торца биметаллической заготовки на процесс формоизменения, конструкциям станов для получения тончайших полос и для теплой прокатки малопластичных металлов и сплавов, а также другим вопросам.  [c.120]

В. С. Иванова с сотрудниками [ 2Б, с. 23—28] на основе всестороннего изучения кинетики усталостного разрушения установила, что наибольшее влияние на скорость разрушения оказывают режимы горячей объемной деформации и температура перекристаллизации и рекристаллизации.  [c.147]

Существенное влияние на ситуацию у вершины трещины в момент разрушения элемента конструкции оказывают скорость деформации и температура.  [c.112]

Возрастание скорости деформации оказывает влияние на вязкость разрушения материала через изменение его предела текучести [32]. Работа пластической деформации перед вершиной трещины уменьшается с возрастанием скорости деформации. Предельное состояние достигается при наименее энергоемком квазихрупком разрушении, когда работа пластической деформации не реализуется. Косвенно сказанное подтверждают результаты испытаний материала в области малоцикловой усталости.  [c.113]

Соотношение (2.28) показывает, что при различном сочетании скорости деформации и температуры нагружения, коп орые весьма далеки от тестовых (стандартных) условий нагружения, могут быть реализованы такие сочетания, когда поправочные функции будут взаимно компенсировать свое влияние на вязкость разрушения материала. Такая ситуация будет далее рассматриваться как эквивалентная тестовым условиям нагружения материала, а получаемые характеристики разрушения будут эквивалентны таковым, но определенным для тестовых (стандартных) условий нагружения.  [c.117]

Представленная запись (7.1) является формальной, и ею подразумевается, что форма цикла не оказывает влияние на процессы деформации и разрушения материала у кончика трещины и на последовательность их протекания. Более того, при любой частоте нагружения и сохранении неизменной формы цикла ее влияние на скорость развития трещины остается неизменной. Однако, как было показано в главе 3, при понижении частоты нагружения и повышении уровня напряжения  [c.339]

Структура материала является определяющим фактором в проявлении влияния изменяемой частоты приложения нагрузки на скорость роста трещины. Поэтому разные материалы в разных областях усталостного разрущения имеют различия в своей реакции на изменение частоты нагружения. В первую очередь это выражается через изменение циклического предела текучести, который влияет на размер зоны пластической деформации у кончика трещины при прочих равных условиях. Влияние на размер зоны скорости деформации 8, температуры Т, а также одновременное влияние этих параметров на процессы разрушения материала внутри зоны в совокупности определяют скорость роста трещины. Поэтому с позиций синергетики следует рассматривать влияние на скорость роста трещины частоты нагружения в виде  [c.340]

Показатель степени при КИН указывает на развитие трещины с таким высоким ускорением, что различия в частоте нагружения не оказывают заметного влияния на процесс разрущения. Из этого факта можно заключить, что имеет место некоторое пороговое ускорение роста трещины, при достижении которого частота нагружения перестает влиять на процесс разрушения материала у кончика трещины. В припороговой области нагружения имеет место такое ускорение в развитии усталостных трещин. Исследования стали 1Сг-1Мо-0,25V и нержавеющей стали с содержанием Сг — 12 % были выполнены при температуре окружающей среды в припороговой области скоростей на компактных образцах толщиной 10 и шириной 50 мм [29].  [c.351]

Одновременное возрастание частоты нагружения и температуры вызывает смещение границы перехода от внутри- к межзеренному разрушению материалов, что необходимо учитывать при определении диапазона частот нафужения, в котором ее влияние на скорость роста трещины пренебрежимо мало.  [c.353]

Расположение плоскости трещины (поверхность излома) перпендикулярно поверхности элемента конструкции характерно только для идеально хрупкого разрушения. Такая ситуация может наблюдаться при росте усталостных трещин с малой скоростью (короткие трещины), когда реализуемая пластическая деформация у поверхности металла не оказывает существенного влияния на ориентировку плоскости трещины. Рассматриваемые в этом разделе способы торможения роста трещин применимы к ситуации, когда процессом формирования скосов от пластической деформации можно пренебречь.  [c.445]

Система Эдгертона с импульсным источником света 57, 58, 596 Скорости деформаций 137 Скорость, влияние на разрушение 402-405, 434  [c.676]


На основе анализа повреждений трубной системы, обнаруженных в период полной разборки двухходового подогревателя, сделан вывод о преимущественном влиянии на разрушение латунных трубок из Л68 высокой температуры питательной воды в зоне охлаждения пара и на участках трубок зоны конденсации, омываемых паром после охладителя [1]. В зону охлаждения пара поступает вода с расчетной температурой всего на 5 °С меньше температуры насыщения. Разрушение трубок ускоряется вследствие возникновения пульсаций температуры в зоне начала закипания. Уменьшение скорости питательной воды при переходе на двухходовой поток сказывается на увеличении срока службы латунных трубок поверхности нагрева зоны конденсации, так как значительно уменьшаются местные сопротивления и возможность вскипания питательной воды, но надежная эксплуатация трубок зоны охлаждения пара при этом не обеспечивается. В связи с тем что латунные трубные элементы в зоне охладителя пара ПНД (последних по ходу питательной воды) быстро выходят из строя, необходимо их изготавливать из нержавеющей стали 12Х18Н10Т (12,5 % общего количества трубок подогревателя).  [c.195]

Существенное влияние на разрушение полимерных материалов, обусловленное термофлуктуационными процессами разрыва связей, оказывает ультрафиолетовое излучение, непосредственно вызывающее разрывы химических связей полимеров. Ультрафиолетовое излучение значительно увеличивает скорость деформации ползучести и снижает долговечность полимерных материалов, находящихся под нагрузкой.  [c.30]

Хотя двойникование может происходить при низких температурах и высоких скоростях деформации, эксперименты, выполненные на нормализованной и отожженной низкоуглеродистой стали, показывают, что при Tqy инициированное скольжением разрушение сколом происходит даже в условиях ударного нагружения. Проведенный Ноттом [18] анализ экспериментальных данных [19] показал, что определяющее влияние на разрушение оказывает критическое напряжение скола в интервале изменения скоростей 10 . Оутс [20] определил непосредственные значения разрушающего напряжения сколом низкоуглеродистой стали в интервале скоростей, отличающихся на четыре порядка. Зарождение разрушения путем скольжения не происходит только в случае самых высоких скоростей деформации и наинизших температур. Для марганцевой стали с одинаковым размером зерна, но содержащей дисперсные зернограничные карбиды, общий уровень температур был существенно ниже, поскольку в образовании трещин скола при Tqy участвовали двойники.  [c.204]

Экспериментальное исследование теплообмена между псевдоожиженным слоем и горизонтально расположенным пучком не выявило существенного влияния на величину а щага труб, что согласуется и с данными [123]. Разница между коэффициентами теплообмена слоя и трубных пучков с шагом 39 и 19 мм не превышала 8—12% во всем диапазоне давлений, вплоть до 8,1 МПа. Таким образом, в псевдоожиженном слое крупных частиц под давлением коэффициенты теплообмена между слоем и горизонтальным трубным пучком практически не зависят от шага труб в пучке. Причем интересно отметить, что с уменьшением шага коэффициенты теплообмена несколько увеличиваются. На рисунках точки, соответствующие наиболее тесному пучку (s = 19 мм), систематически располагаются выше. Хотя реальная скорость фильтрации газа при горизонтальном пучке является переменной по высоте аппарата, влияние изменения ее несущественно, как и при вертикальном расположении труб. Проявление его, очевидно, возможно не столько благодаря росту средней скорости газа у теплообменной поверхности, сколько за счет улучшения условий разрушения сводов в кормовой зоне труб, которые обычно наблюдаются в слоях мелких частиц. Кроме того, рост коэффициентов теплообмена с уменьшением шага труб в пучке может вызываться также тор.мозящим действи-  [c.124]

Неоднородность металлической фазы, жидкой коррозионной средй и физических условий (см. с. 188), а также конструкционные особенности металлических сооружений (их полиметаллич-ность, наличие узких зазоров и др.) делают поверхность металл-электролит электрохимически гетерогенной, что часто оказывает влияние на скорость электрохимической коррйзии металлов и ее распределение, изменяя характер коррозионного разрушения. Даже сплошная коррозия металлов бывает по этим причинам неравномерной или избирательной. Кроме того, встречается местная коррозия различных видов, опасность которой обычно тем больше, чем больше локализовано коррозионное разрушение. Местная коррозия не определяется обш,ей скоростью коррозионного процесса.  [c.414]

Рассмотрим результаты экспериментов, характеризующие влияние скорости деформирования на критические параметры, контролирующие предельное состояние материала, и сопоставим их с механизмами накопления повреждений и разрушения. Основная закономерность, которая наблюдается при различных схемах деформирования в условиях, когда скоростные параметры нагружения влияют на характеристики разрушения, состоит в уменьшении критических значений этих характеристик при снижении эффективной скорости деформирования. Так, при испытании на ползучесть в определенном температурном интервале снижение скорости установившейся ползучести, вызванное уменьшением приложенных напряжений, может приводить к уменьшению деформации ef, соответствующей разрушению образца. В качествее примера на рис. 3.1, а приведены результаты опытов на ползучесть для ферритной стали, содержащей 0,5% Сг, 0,25% Мо, 0,25% V, при 7 = 550°С и напряжении а =150- 350 МПа [342]. При скорости установившейся ползучести порядка 10 3 с деформация до разрушения образца составляет всего несколько процентов.  [c.151]

В условиях циклического нагружения уменьшение эффективной скорости деформирования, обусловленное либо уменьшением частоты, либо выдержкой в цикле, либо формой цикла, может вызвать существенное снижение числа циклов Nf до разрушения, как показано на рис. 3.1,6 на примере нержавеющей стали типа 304, испытанной при 600 и 700 °С и размахе деформации Ае = 1 %. Аналогичные данные получены для бейнитной стали 2,25 Сг — 1 Мо [286] при Т = 575 °С и Ле = 0,5 % выдержка в циклах растяжения и сжатия до 6 мин приводит к снижению усталостной долговечности в три-четыре раза по сравнению с непрерывным циклированием со скоростью деформирования = 4-10- с-. Подобное влияние скорости деформирования на повреждаемость материала наблюдается и на стадии роста усталостной трещины. Например, для никелевого сплава 1псопе1718 уменьшение частоты нагружения до 0,1 Гц  [c.151]

В данной главе рассмотрено разрушение материала, при котором критические параметры Nf или ef) существенно зависят от времени нагружения или от скорости деформирования. При испытании в инертных средах чувствительность материала к скорости деформирования в основном связана с межзеренным характером накопления повреждений и разрушения при вну-тризеренном разрушении такой чувствительности не наблюдается. Скоростная зависимость Nf H) или ef( ) в первую очередь обусловлена накоплением повреждений по границам зерен не только за счет пластического деформирования, но и за счет диффузии вакансий в теле зерна активность диффузионных процессов значительно ниже, чем по границам, и они практически не оказывают влияния на внутризеренное повреждение. Переход от межзеренного разрушения к внутризеренному при увеличении I связан с нивелированием диффузионных процессов по границам зерен и отсутствием проскальзывания зерен.  [c.186]


Марголин Б. 3., Гуленко А. Г, Влияние скорости деформирования на характер разрушения при статическом и циклическом нагружении. Со-общ. 2. Примеры расчета//Пробл. прочности.— 1991.— № 8.—С. 42—48.  [c.371]

Влияние напряжений на разрушение металла в условиях водородной коррозии зависит не только от величины напряжения, но и от 1л о. арактера. Установлено, что в основном ускоряют процессы разрушения металла растягивающие напряжения. В про-цссся, синтеза аммиака благоприятное влияние на скорость во-  [c.151]

Изменение скорости деформации при растяжении от 10- до 10- с-, как правило, не оказывает заметного влияния на характер вязкого разрушения. Вне отмеченных диапазонов деформирования при скоростях ползучести (е<10" с- ) и динамическом деформировании, (е>10 с ) проявляются специфические эффекты, изменяющие характер вязкого разрушения и довольно часто приводящие к хрупкому разрунгению.  [c.434]

При достаточной для коррозии влажности определяющее влияние на скорость ее оказьшает загрязненность воздуха примесями. Наиболее существенные примеси в промышленной атмосфере—это двуокись серы, хлориды, соли аммония. В атмосфере могут содержаться также углекислый газ, сероводород, окислы азота, муравьиная и уксусная кислоты, аммиак. Однако их влияние на скорость атмосферной коррозии в боль-щинстве случаев незначительно. Даже при значительном содержании углекислого газа в атмосфере он снижает pH электролита лишь до 5-5,5, и в условиях избытка кислорода при таком значении pH коррозия с кислородной деполяризацией не переходит в процесс с водородной деполяризацией. Сероводород, оксиды азота, хлор, соли аммония и другие соединения в значительных количествах могут присутствовать только в атмосфере вблизи от химических предприятий, в этом случае их наличие в воздухе оказывает влияние на механизм и скорость коррозионного разрушения металла. Особенно существенно влияние сероводорода на атмосферную коррозию промыслового оборудования месторождений сернистых нефтей и газов.  [c.6]

Исследование коррозионно-эрозионного разрушения материалов. Для про- ведения исследований влияния скорости потока на коррозионное и коррози- онно-эрозионное разрушение материалов может быть использована лабораторная установка (рис. 39). Эта установка совмещает в себе рабочую камеру и электрохимичес-жую ячейку. Корпус диаметром 200 мм и днище изготавливают из углеродистой стали и гуммируют по внутренней поверхности жоррозионно-стойкой и эрозионно-стойкой резиной.  [c.87]

Контакт воды с металлической поверхностью приводит к коррозии металлов, протекающей по электрохимическому механизму. Величина водонефтяного соотношения, характерного для конкретного месторождения, при котором система нефть — вода становится неустойчивой, может быть использована в качестве параметра для прогнозирования скорости коррозионного разрушения оборудования. Углеводороды практически не вызывают коррозию металлов. Однако неполярная фаза в системе нефть — вода оказывает значительное влияние на коррозионную активность водонефтяной системы в целом, повышая или понижая ее. Повышение защитного действия углеводородной составляющей в эмульсионной системе вода — нефть связано в основном с ингибирующими свойствами ПАВ, входящими в природную нефть. Наиболее активные ПАВ — нафтеновые н алифатические кислоты и асфальтосмолистые вещества. Содержание ПАВ в нефтях различных месторождений колеблется в широких пределах. Молекулы нафтеновых и алифатических кислот состоят из неполярной части — углеводородного радикала и полярной части карбоксильной группы, что обусловливает их способность адсорбироваться на границе раздела фаз. Соли нафтеновых кислог более полярны, чем сами кислоты, и более поверхностно-активны. Величина поверхностного натяжения на границе раздела вода — очищенная фракция нефти (например, вазелиновое масло или очищенный керосин) составляет 50—55 мН/м, в то время как поверхностное натяжение на границе раздела вода — сырая нефть не превышает 20—25 мН/м. Это свидетельствует об адсорбции поверхностно-активных компонентов нефти на границе раздела сырая нефть—вода. В щелочной пластовой воде происходит реакция взаимодействия нафтеновой кислоты с ионом щелочного металла. Образующееся соединение более поверхностно-активно, чем нафтеновые кислоты.  [c.122]

По нашему мнению, быстрое разрушение исследованного покрытия главным образом является следствием неблагоприятно ориентированной микроструктуры. При такой структуре скорость исчерпания запаса алюминия во много раз больше, чем та, которая была бы, если бы процесс шел только с поверхности. Кроме того, неблагоприятное влияние на коррозионную стойкость оказывают наблюдаемые в покрытии уже в исходном состоянии дефекты в виде ыикро-каиалов п капель. Микрокаиалы по мере увеличения продолжитель-  [c.186]

Для максимального угла отклонения траектории трещины (90°) величина фрактальной размерности достигает 1,365. Для усталостных трещин, как было указано выше, максимальный угол отклонения трещины составляет около 60°. В этом случае фрактальная размерность составляет 1,12, т. е. рассмотрение развития усталостных трещины только в одном направлении является недостаточным. Влияние отклонения поверхности трещины от горизонтальной плоскости вдоль ее фронта имеет существенное влияние на скорость протекания процесса усталостного разрушения, что подразумевает рассмотрение фрактальных характеристик всей формируемой поверхности усталостного излома. При этом необходимо различать самоподобные и самоафинные фрактальные структуры [154, 155]. Самоподобие рассматривается для статистически эквивалентных профилей поверхности разрушения в обеих направлениях — вдоль развития трещины и перпендикулярно к нему. Для са-моафинных фракталов статистически эквивалентный результат по двум указанным направлениям  [c.261]

Возникающая ситуация перед вершиной распространяющейся трещины и за ней оказывает различное влияние на развитие усталостной трещины при двухосном нагружении при различной ориентировке фронта трещины по отношению ко второй компоненте нагрузки. Это типично синергетическая ситуация в реакции материала на внешнее воздействие. В зависимости от того, какую роль играют внешние условия нагружения в кинетике усталостных трещин, материал имеет возможность задействовать различные механизмы разрушения, оказывающие влияние на скорость протекания процесса эволюции его состояния с распространяющейся усталостной трещиной. Добавление второй компоненты к нагружению по одной оси при благоприятной ориентировке трещины вызывает доминирование либо процесса пластической деформации в вершине трещины (перед ее вершиной), либо стимулирует эффекты контактного взаимодействия в перемычках между мезотуннелями за вершиной трещины. Выбор того или иного процесса происходит самоорганизован-но и зависит от того, какой из задействованных механизмов деформации и разрушения наиболее эффективно приводит к снижению темпа подрастания трещины, а следовательно, позволяет наиболее эффективно поддерживать устойчивость открытой системы — сохранять целостность элемента конструкции с развивающейся в нем усталостной трещиной.  [c.324]


Смотреть страницы где упоминается термин Скорость, влияние на разрушени : [c.521]    [c.210]    [c.234]    [c.73]    [c.241]    [c.235]    [c.252]    [c.299]    [c.349]    [c.351]    [c.355]    [c.359]    [c.573]    [c.30]   
Кавитация (1974) -- [ c.402 , c.405 , c.434 ]



ПОИСК



Влияние очень высоких скоростей на условия разрушения . 6. Механические свойства твердых тел при высоких давлениях

Влияние скорости

Влияние скорости нагружения на деформации и разрушение композитов

Влияние скорости охлаждения и других параметров термического цикла сварки на сопротивляемость закаливающихся сталей задержанному разрушению в околошовной зоне

Оценка влияния вторичных явлений на скорость коррозии и глубину коррозионных разрушений

Скорость, влияние на разрушени цикл существования каверн



© 2025 Mash-xxl.info Реклама на сайте