Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свёрла Использование

Расплавы легкоплавких металлов, несмотря на достаточную известность, редко применяют в качестве СОТС. Известно, что с увеличением прочности повышается чувствительность некоторых сталей (главным образом высокопрочных) к хрупкости при смачивании расплавленными легкоплавкими металлами. При этом разрушения происходят макро-хрупко в случае контакта напряженной стали с расплавленным кадмием, оловом, свинцом, цинком и различными припоями. Закономерности влияния жидкометаллических сред изучены в основном при операциях сверления спиральными сверлами. Использование в качестве СОТС легкоплавких металлов позволяет уменьшить интенсивность изнашивания инструмента при сохранении его режущих свойств [18], При обработке с расплавами металла резко измельчается стружка, приобретающая форму мелких иголочек шириной 0,1 мм, взвешенных в металлическом расплаве. Рекомендации по выбору расплавов металлов на операциях сверления приведены в табл, 5,15,  [c.283]


При послойном шлифовании с каждого пера снимается не более одного слоя металла подряд. В связи с этим снижается тепловая напряженность процесса резания и уменьшается опасность появления прижогов или трещин. Износ шлифовального круга не влияет на симметричность заточки задних поверхностей. Недостаток послойного шлифования заключается в том, что после каждого прохода происходит деление и общее время, затрачиваемое на деление, составляет 50—60% продолжительности цикла заточки сверла. Использование послойного шлифования экономически оправдывается только для методов с непрерывным делением.  [c.129]

При распределении технологических операций по отдельным позициям линии следует стремиться к тому, чтобы продолжительность работы инструментов на станках была примерно одинаковой это необходимо для более полного использования инструментов. Выравнивание времени работы инструментов достигается разными способами повышением и понижением режимов резания на лимитирующих операциях, расчленением длительных операций на несколько частей, например сверление глубоких отверстий по частям последовательно на нескольких позициях (на первой позиции сверлится часть длины отверстия, на второй—следующая часть и т. д.), двустороннее (встречное) сверление применением комбинированного инструмента и т. п.  [c.456]

Следует отметить одно важное свойство винтовых поверхностей, состоящее в том, что эти поверхности, так же как и поверхности вращения, могут сдвигаться, т. е., совершая винтовое перемещение, поверхность скользит вдоль самой себя. Это свойство обеспечивает винтовым поверхностям широкое применение в технике. Винты, шнеки, сверла, пружины, поверхности лопаток турбин и вентиляторов, рабочие органы судовых движителей, конструкции винтовых аппарелей и лестниц — вот далеко не полный перечень технического использования винтовых поверхностей.  [c.117]

Основными видами обработки резанием являются точение, строгание, сверление, фрезерование и шлифование. Обработка металлов резанием осуществляется на металлорежущих станках — токарных, строгальных, сверлильных, фрезерных и шлифовальных — с использованием различных режущих инструментов — резцов, сверл, фрез, шлифовальных кругов.  [c.66]

Использование сверл с алмазным покрытием режущей кромки дало хорошие результаты. Отмечается высокая производительность процесса, стойкость инструмента. Сверление производи-лость при охлаждении инструмента эмульсий. Особенно эффективным оказался процесс сверления алмазным сверлом при одновременном воздействии на режущий инструмент ультразвуковых колебаний. Это позволило уменьшить на порядок износ инстру-  [c.201]

Применение алмаза позволило освоить изготовление цельного твердосплавного инструмента сверл диаметром до 8 мм, концевых фрез диаметром до 15 мм, дисковых прорезных и модульных фрез диаметром до 60 мм, разверток диаметром до 12 мм и т. д. Решена проблема образования на передней поверхности резцов стружколомающих канавок. Сливная стружка, образующаяся при обработке многих сталей и цветных сплавов, из-за трудности ее отвода часто наматывается на заготовку. Связанная с этим повышенная опасность во многих случаях является одной из основных причин снижения скоростей резания и неполного использования возможностей оборудования и инструмента. Особенно важна эта проблема при обработке деталей на автоматических линиях. Накладные стружколомы не всегда применимы, к тому же они усложняют, а иногда и ослабляют инструмент. Стружколомающие канавки на передней поверхности резцов являются не только наиболее простым, но, как показывает практика, и одним из самых эффективных способов решения этой проблемы, особенно для чистовых операций.  [c.67]


Обработка электронным лучом основана на использовании тепловой энергии, которая выделяется ири ударе быстродвижущихся электронов о поверхность обрабатываемой детали. Установки для электроннолучевой обработки работают при напряжениях 60— 150 кВ. Рабочая ширина луча изменяется от 3 до 30 мкм. Выходная мощность установок может достигать нескольких киловатт, а удельная мощность энергии в пятне около 10 Вт/см . Электронным лучом получают пазы и щели размером от нескольких до десятков микрон в пленках, фольге, прошивают отверстия в кварцевых пластинах, производят резку ферритов, на которых выполняется память ЭВМ, изготовляют фильеры для получения искусственного волокна, сверлят отверстия в рубиновых камнях часов, режут полупроводники, выполняют другие аналогичные работы. Электронный луч можно использовать также для сварки, плавки, очистки металла.  [c.144]

Повышение производительности труда и снижение себестоимости технологических операций при обработке металлов резанием в значительной степени зависят от применяемого режущего инструмента, его конструкции, материала и способа использования. В справочнике приводятся общие сведения о процессе резания, элементах режущего инструмента, механических свойствах и областях применения инструментальных материалов, а также о конструктивных параметрах, назначении и эксплуатационных свойствах резцов, сверл, фрез, протяжек, зуборезного инструмента и абразивов.  [c.3]

При последовательной работе инструментальных блоков для обработки указанных отверстий могут использоваться как комбинированные инструменты с последовательной работой режущих элементов (например, сверление отверстий 2—5 и снятие фасок комбинированными сверлами), так и револьверные головки. оснаш,енные стандартным инструментом. Так как применение комбинированных сверл в данной группе инструментальных блоков лишь сокращает одну позицию револьверной головки, не исключая ее применения (необходимо нарезание резьбы), вариант использования  [c.193]

Центровые отверстия должны быть изготовлены в соответствии с ГОСТ 14034—74. Центрование осуществляют последовательно набором инструментов или одним комбинированным. Последовательная обработка выполняется за две-три операции в зависимости от размера центрового отверстия. В начале выполняют центрование отверстия более жестким инструментом (спиральным сверлом большого диаметра), затем сверлят малое отверстие и далее зенковкой обрабатывают коническую поверхность. При использовании комбинированного сверла центровое отверстие получается за одну операцию.  [c.205]

В качестве индикатора, регистрирующего результаты контроля таких проборов, используются электроннолучевые трубки. Светящаяся точка на экране трубки перемещается под действием сигналов от измерительных катушек дефектоскопа, ток в которых измеряется в зависимости от свойств контролируемого материала. При этом по направлению световой точки можно судить, какой из пороков имеет место. Основанные на принципе вихревых токов дефектоскопы применяются для контроля изделий массового производства. В частности, качество шариков для подщипников (необработанных и шлифованных) проверяется со скоростью до 5 шт. в I с можно проверять пружины весом в несколько миллиграммов, крупные сверла, кольца подшипников и другие изделия. Имеются и другие разновидности дефектоскопов, работающих при использовании вихревых токов. Существуют приборы, позволяющие весь процесс контроля детали осуществить за 0,02 с, т. е. при токе в дефектоскопе частотой 50 Гц в 1 с на контроль одной детали требуется не более одного периода колебаний.  [c.261]

Конечно, и при использовании многошпиндельных станков могут быть некоторые отклонения от правильной настройки шпинделей, увод сверл, неточность при начальной установке детали. Но эти причины не зависят от последовательности самой обработ и.  [c.102]

Для повышения эффективности внедрения режущего инструмента прогрессивных конструкций и из износостойких инструментальных материалов необходимо улучшить технологию заточки инструмента путем замены ручной заточки автоматизированной с внедрением новых моделей заточных станков увеличить выпуск современных смазочно-охлаждаюш,их жидкостей обеспечить серийное производство ряда моделей станков с целью эффективного использования прогрессивных конструкций инструмента из новых инструментальных материалов гаммы станков и агрегатных силовых головок для обработки отверстий твердосплавными сверлами одностороннего резания токарных станков для работы резцами из эльбора зуборезных станков, рассчитанных на работу твердосплавным инструментом специальных станков для нарезания колес методом зуботочения специальных продольно-фрезерных станков для работы с подачами до 2—3 м обеспечить оптимизацию условий эксплуатации режущих инструментов осуществить внедрение технологии полной эльборовой заточки и переточки всего режущего инструмента из быстрорежущей стали.  [c.324]

Неблагоприятные условия работы инструмента при сверлении высокопрочных аустенитных сталей не способствуют успешному использованию сверл со вставными пластинками твердого сплава, так как из-за больших сил и высоких температур резания припой твердосплавных вставок выплавляется и режущие кромки выкрашиваются.  [c.344]


В шпильке сверлят отверстие, в которое забивают зубчатый бор (рис. 101, а), и при его помощи шпильку вывинчивают, для этой же цели пользуются экстрактором фис. 101, б) возможно также приваривание гайки (рис. 101, в). Из алюминиевого корпуса шпильку можно вытравить раствором азотной кислоты, предварительно высверлив внутреннюю часть ее, однако так, чтобы не повредить резьбу корпуса. В качестве катализатора применяют железо в раствор кислоты, налитой в гнездо шпильки, опускают кусочек железной (вязальной) проволоки. Через каждые 5—10 мин использованную кислоту надо удалять из гнезда шпильки пипеткой и наполнять гнездо свежей кислотой. Процесс травления длится несколько часов.  [c.142]

При обработке крупных, тяжелых деталей на расточном станке необходимо предусматривать одновременно с расточной операцией выполнение другими станками последующих операций для сокращения цикла производства. Следует по возможности избегать лишних переустановок детали и использование борштанги, надо шире применять раздельный метод обработки деталей. Последовательность переходов при обработке отверстий разных классов точности в сплошном материале приведена в табл. 59. В табл. 60 приведена последовательность переходов при растачивании деталей разных классов точности из заготовок с отверстиями, предварительно выполненными в заготовительных цехах. Отверстия диаметром менее 40 мм сверлятся в один проход, а при большем диаметре — в два прохода. Для сверления отверстий диаметром свыше 80 мм рекомендуется применять метод трепанации и производить дальнейшую обработку резцом или резцовой головкой. Допускается увеличение припуска на зенкерование до ближайшего размера нормального диаметра сверла.  [c.373]

Малые скорости резания при сверлении отверстий на автоматах без использования специальных приспособлений приводят к тому, что часто ломаются сверла. На фиг. 17 показано приспособление к автомату для ускоренного сверления.  [c.181]

Влияние угла <о на профиль фрезы имеет практическое значение. Иногда приходится одной и той же фрезой обрабатывать свёрла с различным углом ш, например, свёрла из быстрорежущей и углеродистой стали. Важно знать, как меняется профиль фрезы с изменением угла ш, с тем чтобы можно было компенсировать получающееся искажение соответствующей наладкой станка. С изменением угла ш конфигурация профиля фрезы меняется как по главной, так и вспомогательной частям. Изменением положения точки S нельзя добиться полного совпадения профилей, поэтому приходится удовлетворяться лишь совпадением главной части профиля фрезы, обеспечивающей прямолинейную режущую кромку сверла. Несовпадением же вспомогательных частей профилей можно пренебречь. Следовательно, небольшое изменение угла ш допускает использование фрезы не по прямому назначению.  [c.329]

Комбинированные свёрла (фиг. 22) изготовляются двухсторонними для лучшего использования материала. Канавки делаются или прямыми, или косыми (реже винтовыми) с углом наклона ш = 5—8°. Угол режущей части 59—60 , угол поперечной кромки 50—55°. Задний конус принят 0,05— 0,10 мм на всю длину сверла. Толщина сердцевины С = (0,15-f-0,17) D и увеличивается по направлению к хвосту под углом 3°. Передний угол заточки 5—6°. Заточка такого сверла производится таким же образом, как и  [c.331]

Расчеты показывают, что если бы указанные инструменты имели высокую стабильность и их стойкость была выдержана всегда в интервале 1600—2000 блоков, то средняя стойкость осталась такой же, и с точки зрения неавтоматизированного производства ничего не изменилось бы. Но для автоматической линии такая стабильность позволила бы менять все инструменты одновременно, с полным использованием их режущих свойств, при этом число остановок линии для смены сверл на головке 15М сократилось бы в 30—40 раз.  [c.44]

Использование на автоматических линиях режущего инструмента с высокой точностью расположения одноименных элементов режущей части в заданных поверхностях позволит значительно снизить отношение максимальной стойкости к минимальной за счет значительного повышения минимальной стойкости. В этом случае минимальная стойкость по своему численному значению приближается к числовому значению средней арифметической величины, установленной за период наблюдения. Данные таблиц показывают значительные отклонения фактической стойкости от стойкости, определенной по действующим нормативам режимов резания. Особо большое отклонение имеется у спиральных сверл.  [c.81]

Отверстия большого диаметра (свыше 60—70 мм) целесообразно обрабатывать путем кольцевого сверления, так как при обычном сверлении в стружку уходит значительное количество металла. При использовании же кольцевого сверла (рис. 88) большая часть металла остается в виде сердечника, пригодного для использования.  [c.187]

Основные типы сверл и краткая характеристика их использования Сверла спиральные с ци  [c.319]

Затруднительность оценки степени защемления сверла в шпинделе делает здесь наиболее естественным использование схемы стержня с  [c.323]

Без использования средств механизации отверстия до 10—12 мм сверлят ручными дрелями, отверстия больших диаметров — трещотками. Сверление отверстий в мягких материалах производят коловоротами.  [c.391]

Использование на станках с вертикальной осью вращения револьверной головки эжекторных сверл позволяет за один переход обработать в заготовке отверстие с точностью 10—12-го квалитета и параметром шероховатости поверхности Ка = 0,631,25 мкм, но станок для этого требуется модернизировать. Схема наладки револьверного станка с использованием стандартных резцов с СМП и эжекторного сверла для обработки ступенчатой втулки представлена на рис. 72, а. В позициях I, 3, 4 револьверной головки закреплены проходные упорные резцы, в позициях 2, б — эжекторное сверло и трубопровод вывода стружки, в позиции 5 — резцы для снятия наружной и внутренней фасок. На позиции 1 (рис. 72,6) резцовой головки суппорта закреплен подрезной канавочный резец на позициях 2, 4 — фасочные резцы на позиции  [c.272]

Рис. 23. Типовые циклы обработки отверстий в сплошном материале а —ж), отверстий, полученных в отливке (з — н). выточек в отверстиях (о — п) 7 — цекование б— — сверление спиральным (6), перовым в), кольцевым (г) сверлом растачивание д. з — к. н — однорезцовой оправкой (д. з), двусторонней головкой (и), 3 — черновое, к — получистовое, н — чистовое с, ж, л< — развертывание однолезвийной (с) и многолезвийными (ж. м) развертками л, н — фрезерование фрезой для контурной обработки о, р — черновое и чистовое растачивание выточки с подрезкой торца с использованием подрезной пластины с — растачивание выточки с подрезкой торца резцом ж — обработка ступенчатых отверстий комбинированным сверлом Рис. 23. Типовые циклы обработки отверстий в сплошном материале а —ж), отверстий, полученных в отливке (з — н). выточек в отверстиях (о — п) 7 — цекование б— — сверление спиральным (6), перовым в), кольцевым (г) сверлом растачивание д. з — к. н — однорезцовой оправкой (д. з), двусторонней головкой (и), 3 — черновое, к — получистовое, н — чистовое с, ж, л< — развертывание однолезвийной (с) и многолезвийными (ж. м) развертками л, н — фрезерование фрезой для контурной обработки о, р — черновое и чистовое растачивание выточки с подрезкой торца с использованием подрезной пластины с — растачивание выточки с подрезкой торца резцом ж — обработка ступенчатых отверстий комбинированным сверлом

Сосуды кислотоупорные, герметизирующие и уплотняющие элементы для их затворов В 65 D 53/10 открывание с помощью различных устройств и приспособлений В 67 В 7/00) Спальные (вагоны В 61 D 1/(02-08) устройства (в ж.-д. вагонах В 61 D 31/00 в транспортных средствах В 60 Р 3/38)) Спасательные люки в крышах или днищах транспортных средств В 60 J 9/02 средства, используемые на летательных аппаратах В 64 D 25/00-25/20) Спекание <В 29 С (для изготовления изделий из пенопластов 67/04 порошков пластических материалов 67/04) исследование процесса спекания G 01 N 25/(02-12) металлического порошка В 22 F (3/(10, 12-16) изготовление заготовок спеканием 7/00-7/08 при получении сплавов С 22 С 1/04) Спирали (изготовление навиванием проволоки В 21 F 3/00-3/12 использование для скрепления листов В 42 В 5/12 проволочные, использование для изготовления трубчатых элементов теплообменных аппаратов F 28 F 1/36) Спиральные [запорные элементы клапанов F 16 К 1/40 канавки, нарезанные с помощью строгальных или долбежных станков D 5/02 поверхности токарные станки для обработки В 5/46-5/48) В 23 <(В 51/02 изготовление С 3/32, Р 15/32)) пружинные двигатели F 03 G 1/04 сверла (ковка В 21 К 5/04 изготовление В 24 В 3/26, 19/04)] Спицы колесные (В 60 В 1/00-1/14, 5/00 изготовление из проволоки В 21 F 39/00) рулевых колес В 62 D 1/08) Сплавы [С 22 С анализ G 01 N для легирования железа и стали С 22 С 35/00 на основе железа <С 22 С 33/(00-12) общие способы получения 33/00 прокатка В 21 В 3/02 термообработка С 21 D 6/00-6/04) цветных металлов С 22 <С 1/00-32/00 изменение физической структуры особыми физическими способами F 3/00-3/02)]  [c.181]

При постановке и использовании контрольных штифтов следует брать не менее двух для каждой сопрягаемой поверхности и ставить их на возможно большем друг от друга расстоянии. Для этой цели в выбранных местах сверлятся через плотно скрепленные детали сквозные отверстия, которые затем развертываются  [c.27]

На токарно-карусельных станках обтачивают наружные и растачивают внутренние цилиндрические и конические поверхности, обтачивают фасонные поверхности, сверлят, зеике.руют и развертывают отверстия, обтачивают плоские торцовые поверхности. Использование специальных приспособлений позволяет нарезать резьбы резцами, обрабатывать сложные фасонг ые поверхносги по электро-копиру, а также фрезеровать и шлифовать плоские поверхности, На станках ведут многоииструмептную обработку.  [c.304]

Различные методы удаления заусенцев применяют и в конце технологического процесса. Большое распространение получили механические методы, особенно с использованием ручного механизированного инструмента фрезерных нли абразивных головок, металлических щеток, шлифовальных кругов, ленточных шлифовальных установок. Для удаления заусенцев, получения фасок и переходных поверхностей используют также металлорежущие станки (рис. 6.109). Фаски на деталях типа тел вращения протачивают на станках токарной группы (рис. 6.109, а), а на деталях в виде корпусов, плат, планок — на фрезерных станках (рис. 6.109,6). Целесообразно использование специального режущего инструмента — фасонных фрез. Широко используют станки сверлильнорасточной группы (рис. 6.109, б). Фаски на выходе отверстий получают специальными зенковками или обычными сверлами. Производительную обработку кромок деталей проводят на протяжных станках (рис. 6.109, г). Протяжки выполняют по форме обрабатываемых граней, расположенных на наружных или внутренних поверхностях. Используют зуборезные станки (рис. 6.109, д) для снятия заусенцев и получения фасок методом огибания (например, на шлицевых валах).  [c.380]

Прибор МАША-1 может быть использован в комплекте как с накладным и проходным преобразователями, так и с преобразователем смешанного типа. Прибор с преобразователем смешанного типа применяется для контроля содержания остаточного аустё-нита после термической обработки сложнопрофильного режущего инструмента (сверл, метчиков и т. д.) из стали Р6М5 (рис. 43). Правильный выбор частоты анализа сигнала, полосы пропускания фильтра и уровня дискриминации позволяет уменьшить влияние на показания прибора величины зазора между измерительным преобразователем и изделием, температуры закалки стали перед отпуском, колебаний химического состава стали и других мешающих факторов. Такая настройка позволяет изменить вид зависимости показаний прибора от содержания аустенита (см. рис. 43).  [c.79]

В процессе выголиения этой работы были решены две важные технологические задачи. Первая из них — получение эпоксидного боропластика толш иной —40 мм. Боропластики такой толщины никогда прежде не изготовлялись кроме того, получение обшивок дополнительно усложнялось введением металлических прокладок. В ходе предпроизводственных испытаний установлено, что при использовании стандартного режима отверждения, разработанного к тому времени, процесс формования материала сопровождался значительным его перегревом вследствие экзотермического характера протекающих реакций. Был разработан ступенчатый температурный цикл отверждения с определенным временем выдержки при каждой температуре, который обеспечил решение проблемы перегрева. В конечном итоге было обеспечено хорошее качество изготовления верхней и нижней обшивок в производственных условиях. Вторая задача — разработка процесса сверления отверстий в комбинированном пакете эпоксидный боро-пластик — титановые прокладки. Корончатые сверла с алмазными вставками забивались титаном и становились неэффективными. Тем не менее высокое качество получаемых отверстий было достигнуто путем тщательного подбора оборотов и скоростей подач и при сверлении и использованием принудительного охлаждения струей нiидкo ти.  [c.142]

Для выявления роли ПАВ при использовании эффекта ИП в процессах резания металлов был поставлен следующий опыт. В заготовках из сталей 38ХА и 40Х (твердостью ВЯС 32) сверлом d = 10 мм из быстрорежущей стали HSS сверлили отверстия на глубину 40 мм при скоростях резания =25,1, =19,8 и Уз = 12,6 м/мин до появления на задних поверхностях инструментов фаски износа h = 0,5 ч-0,6 мм.  [c.199]

Выполнение станков с автономными системами управления значительно расширяет технологические возможности линий в процессе эксплуатации. Время цикла обработки одной детали 39 с, проектная производительность комплекса 85 шт/ч при коэффициенте использования 0,92. В комплексе имеется 41 рабочая позиция, в том числе 29 агрегатных станков, пять отделочнорасточных станков, один сборочный автомат, три моечные машины и три промышленных робота для загрузки, перегрузки и разгрузки обрабатываемых деталей. На станках комплекса установлены 172 режущих инструмента. Контроль точности растачивания отверстий и контроль поломки всех стержневых инструментов (сверл, зенкеров, разверток и метчиков) осуществляются автоматически с помощью контрольных устройств. Комплекс обслуживают в смену семь наладчиков и один оператор, загружающий заготовки в первый станок комплекса. Оптимальное число оборудования, места установки и вместимости накопителей задела, надежность и производительность проектируемых несинхронных автоматических линий и комплексов определяются методом статистического моделирования их работы на ЭВМ.  [c.166]

И инструменты различного техно-логического назначения (сверла-зенкеры, сверла-развертки, дековки-зенковки и т. п.). На АЛ такие инструменты применяют в следующих случаях для концентрации операций и сокращения числа рабочих позиций при выполнении последовательной черновой и чистовой обработки сквозных отверстий без перестановки заготовок (например, при обработке базовых отверстий за два перехода) при обработке соосных отверстий разного диаметра для обеспечения минимального отклонения от соосности. Но комбинированные инструменты дороги Б изготовлении и сложны при затачивании. Поэтому вопрос их использования должен решаться с учетом экономических соображений. Наиболее целесообразно применять комбинированные инструменты при обработке деталей из алюминиевых сплавов, когда их стойкость высока и соответственно затраты на эксплуатацию относительно [малы.  [c.34]

При использовании ступенчатого сверла необходимо длину втулки и ее расиоложение относительно обрабатываемой детали выбирать таким образом, чтобы длина направления сверла в начале рабочего хода была не меньше указанной ниже  [c.35]

Материал инструмента — быстрорежущая сталь Ус ер = 20 ч--н40 м/мин S Bep = 0,25-ь1 мм/об в зависимости от диаметра сверл (при использовании твердосплавных сверл к вер = = 100 н-150 м/мин s Bgp = 0,25- 1 мм/об) = 20- 30 м/мии  [c.195]

Если применяют поочередное сверление отверстий на одношпиндельном станке, то затрачивается много времени, производительность труда и оборудования получается малой, кроме того, возможны отклонения в расстояниях между центрами отверстий, так как сверло может чуть-чуть сдвинуться, а это приведет к снижению качества или даже к браку. При использовании же сверлильных головок сО миогими точно рас-положенным[ инструментами процесс обработки значительно ускоряется и повышается точность. Производительность такого станка-автомата очень высока он может заменить десятки, а иногда и сотни одношпиндельных сверлилок.  [c.20]

В качестве основного материала для режущей части сверл принята быстрорежущая сталь Р6М5. Материал хвостовой части — конструкционная сталь 40Х. С целью повышения коэффициента использования металла приняты наиболее прогрессивные методы формообразования заготовок — получение хвостовой части обжатием вместо точения, а рабочей части — методом продольновинтового проката. Коэффициент использования быстрорежущей стали повышается с 0,57 до 0,75, а конструкционной с 0,39 до 0,7.  [c.321]


Коэффициенты к для данного обрабатываемого металла при работе различными режущими инструментами и использовании различных инструментальных материалов могут существенно различаться. Например, коэффициенты к многих металлов сильно отличаются при точении быстрорежущими резцами и сверлении быстрорежущими сверлами в связи с различным влиянием на стойкость стесненных условий стружкообразования, затрудненного стружкоотвода, неблагоприятных геометрических параметров и пониженной жесткости сверл.  [c.164]

Выработка гнёзд может выполняться цепным долблением с использованием фрезерной цепочки, посредством сверлильно-долбёжного процесса, при котором сверло работает в полом квадратного сечения долоте, путём сверлиль-  [c.686]

Рфцг. 4-4. Вырезная головка, ния, В особенности в последний момент сверления трубного гнезда. Размеры вспомогательной планки выбирают, исходя из возможности использования имеющихся отверстий в барабане для крепления к ним планки. После прикрепления планки сверлится сквозное отверстие по центру намеченного трубного гнезда для установки в нем направляющей шпильки приспособления. Затем устанавливается направляющая шпилька, а на нее надевается оправка приспособления с выверенным положением резцов на ней. Вращение оправки при сверлении трубного гнезда производится при помощи пневматической машинки-  [c.82]

Особенно широкими технологическими возможностями характеризуются современные токарные станки с ЧПУ (например, станки 1П732Ф4, Ш732Ф4А). Кроме различных токарных работ с использованием специальных инструментальных шпинделей с вращающимся инструментом (сверлами, фрезами и т. п.) на них обрабатывают различные отверстия (в том числе и поперечные), фрезеруют канавки, лыски, пазы, нарезают резьбу (рис. 34). На таких станках возможна полная обработка деталей, если они не подвергаются термической обработке. Для выполнения этих переходов обработки шпиндель останавливается в фикси-  [c.248]

Ч. Холл. Оба родились в 1853 г. и умерли в 1914 г. 44. А. а) композит-10 б) ВКЗМ. композит-10 в) ал.мазный резец г) резец из углеродистой стали У8 или УЮА д) шлифовальный круг из синтетических алмазов. Б. Под руководством академика Л. Ф. Верещагина. 46. В машиностроении клеевые композиции применяют для склеивания сверл, фрез и другого инструмента из быстрорежущей стали с хвостовиками из других недефицнтных сталей пластмассовых накладных направляющих с чугунными корпусами станин, суппортов и других деталей, кристаллических сверхтвердых материалов с державками элементов ячеек солнечных батарей на космических кораблях пластмассовых гидроприводов рулонной и листовой кровли на железнодорожных вагонах и во многих других случаях. 52. Одним из способов использования хо-  [c.151]


Смотреть страницы где упоминается термин Свёрла Использование : [c.368]    [c.325]    [c.45]    [c.623]    [c.172]   
Металлорежущий инструмент конструкция и эксплуатация Справочное пособие (1952) -- [ c.75 ]



ПОИСК



Основные типы свёрл и краткая характеристика их использования

Свёрла Использование — Характеристики



© 2025 Mash-xxl.info Реклама на сайте