Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Автомодуляция фазы

Нелинейная фаза заканчивается в момент насыщения нелинейного поглотителя. В этот же момент в принципе заканчивается процесс формирования импульса и начинается фаза насыщения усилителя (область III). В течение этой фазы инверсия населенностей в усилителе полностью снимается и процесс генерации прекращается. Соответственно этой специфике процесса генерации стационарный режим при пассивной синхронизации мод твердотельного лазера не достигается, а излучается цуг из нескольких импульсов с переменными параметрами. Интервал между импульсами равен времени прохода резонатора (см. рис. 7.6). Параметры цуга, такие, как его средняя продолжительность и интенсивность в максимуме, устанавливаются в области III. За время этой усилительной фазы вследствие большой интенсивности импульсов могут проявляться эффекты, связанные с зависимостью от интенсивности коэффициента преломления, такие, как автомодуляция фазы, что может привести к расширению спектра, положительному сдвигу частоты или расщеплению импульсов на стохастические подымпульсы. Подобные эффекты могут существенно повлиять на свойства импульсов. Их можно, однако, исключить путем ограничения максимальной интенсивности, так как они проявляются лишь после окончания процесса синхронизации мод.  [c.230]


ПС. Типовые лазеры на стекле с неодимом излучают импульсы длительностью от 2 до 20 пс при энергии максимального импульса от 1 до 10 мДж и полуширине цуга импульсов от 50 до 200 НС. Сравнение экспериментальных результатов для лазеров на стекле с неодимом с теоретическими результатами расчета длительности импульса, полученными в разд. 7.2, показывает хорошее совпадение лишь в начале цуга импульсов. Длительность импульсов в максимуме цуга существенно превосходит рассчитанную теоретически, а форма импульсов сложна. Интенсивные исследования временной и спектральной структур выходного излучения лазера на стекле с неодимом с синхронизацией мод [7.14—7.18, 7.25—7.30] позволили по существу дать следующее объяснение сложности этой структуры. В начале цуга длительность импульсов составляет от 2 до 5 пс, а полуширина их спектра соответствует обратной величине длительности [7.16, 7.18] (AvbTb 0,5). Измерения методом двухфотонной люминесценции показывают, что отношение пьедестала к пику составляет 1 3, что соответствует случаю хорошей синхронизации мод (см. гл. 3). По этой причине селекция импульсов (см. п. 7.3.3) осуществляется таким образом, чтобы для дальнейшего усиления и применения в последующем эксперименте выбирался импульс из передней части цуга. Спектральная ширина импульсов, соответствующих дальнейшему развитию цуга, сильно нарастает, и четко обнаруживается образование подструктур как в спектре импульсов, так и во временной зависимости интенсивности. Причиной расширения спектра является неоднородное по спектру снятие усиления и автомодуляция фазы излучения, возникающая в результате нелинейного взаимодействия интенсивного излучения со стеклянной матрицей (см. п. 7,2.4). При относительно высоких интенсивностях излучения лазера проявляется изменение показателя преломления стеклянного стержня, зависящее от интенсивности 1ь импульса  [c.260]

В результате этого возникают нелинейные эффекты, которые, с одной стороны, ведут к автомодуляции фазы, а с другой — к самофокусировке излучения. Автомодуляция фазы является причиной положительного временного сдвига частоты, а также расширения спектра и при определенных условиях может привести к расщеплению импульса на большое число компонентов  [c.260]

Автокорреляционная функция 106. ЮГ, 179 Автомодуляция фазы 262 Акцептор 36  [c.363]

Рассматривая влияние геометрических условий распространения света в среде, укажем еще на явление фазовой автомодуляции световой волны [4.11]. Она обусловлена нелинейным эффектом зависимости показателя преломления от напряженности поля и изменяет когерентные свойства света и форму коротких импульсов, а также влияет на эффективность нелинейных процессов, зависящую от относительных фаз волн.  [c.484]

Практически всякие колебания и волны модулированы. Модуляция по определению есть медленное изменение параметров несущей — амплитуды, фазы, частоты и даже формы колебаний или волн. Она может быть связана с воздействием внешних сил или полей (вынужденная модуляция), а может возникать самопроизвольно в результате развития разного рода неустойчивостей (самомодуляция или автомодуляция). Мы уже знаем примеры и вынужденной модуляции, и са-момодуляции. Изменение длины волны и амплитуды квазигармоничес-кой волны в плавно неоднородной среде — вынужденная модуляция, определяемая законом модуляции параметров среды в пространстве. Возникновение вне полосы синхронизации биений и автогенераторе, на который подается периодический сигнал, — пример модуляции, обязанной своим происхождением взаимодействию немодулированных колебаний. Иа плоскости медленных амплитуд такой модуляции соответствует, как мы видели, устойчивый предельный цикл. Модуляция, очевидно, возникает н результате взаимодействия осцилляторов и в консервативных системах и средах (см. гл. 17). Например, при выполнении условий резонанса 2шо = и>1+Ш2 этот процесс естественно назвать взаимной модуляцией если же 0,1,2 и Л о(О) -/VI,2(0), то такой процесс распада пар квазичастиц на сателлиты и 2 — это самомодуляция.  [c.410]



Смотреть страницы где упоминается термин Автомодуляция фазы : [c.243]    [c.260]    [c.262]    [c.184]    [c.425]   
Лазеры сверхкоротких световых импульсов (1986) -- [ c.262 ]



ПОИСК



П фазы



© 2025 Mash-xxl.info Реклама на сайте