Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

9 — Определение 6 — Понятие хрупкое

Определение критической температуры хрупкости по сериальным испытаниям на ударный изгиб. Введение понятия хрупкого и вязкого отрыва. Работа разрушения (после максимума нагрузки при испытании па изгиб) с уменьшением температуры падает быстрее, чем работа зарождения разрушения (до максимума нагрузки)  [c.480]

Существуют различные классы композитных материалов, отличающиеся как областью применения, так и своими свойствами. Хотя прочностные свойства отдельных классов могут совпадать друг с другом, в этой главе будут рассмотрены только композиты с дисперсными частицами в хрупкой матрице. Понятие хрупкого поведения означает упругое состояние вплоть до разрушения и малую вязкость разрушения. Кроме керамики и перекрестно сшитых высокополимеров никакие материалы матрицы не подходят под это определение. Керамики являются наиболее хрупкими материалами и не обнаруживают текучести перед разрушением вплоть до температур, обычно превышающих половину их температуры плавления. Хрупким полимерам свойственна некоторая текучесть, но она пренебрежимо мала по сравнению с менее хрупкими полимерами (т. е. термопластами) и металлами.  [c.12]


Обобщенный нормальный разрыв реализуется в большинстве хрупких и квазихрупких тел. У кусочно-однородных теЛ и в некоторых других случаях порядок особенности, вообще говоря, будет уже отличен от 1/2 соответствующее определение понятия обобщенного нормального разрыва на этот случай не вызывает затруднений.  [c.150]

Наиболее простое определение понятий о хрупкости материала следует из рассмотрения кривых напряжение—деформация. Хрупкость характеризуется тем, что образец разрушается при нагрузке, соответствующей максимуму кривой о—е (например, кривые / и 2 на рис. 2.1,6) при деформациях обычно меньших 5%. Различие между хрупким и пластическим разрушением проявляется также в количестве энергии, диссипируемой при разрушении, и в природе поверхности разрушения. Внешний вид поверхности разрушения также указывает на различия между хрупким и пластическим разрушениями и является важным фактором эмпирического описания указанных явлений.  [c.259]

Особый интерес к проблеме хрупкого разрушения возникает в связи со случаями внезапного разрушения ответственных конструкций, на поверхность которых нанесены хрупкие износостойкие покрытия. Для оценки надежности материалов с покрытиями необходимо экспериментальное определение их склонности к зарождению трещин, а также определение способности материалов противостоять процессу развития трещины или разрушению. Эти показатели объединяются в общее понятие — вязкость разрушения.  [c.135]

Вязкость разрушения, или сопротивление материала распространению трещины, может быть определена также при помощи понятия критических скоростей высвобождения энергии при продвижении трещины ди, связанных с Ki - Многочисленные авторы (см., например, [18—23]) исследовали распространение разрушения, изучая механизмы рассеяния энергии, например выдергивание волокна, нарушение связи волокно — матрица, релаксация напряжения, разветвление трещины и пластическое деформирование матрицы. Механизмы рассеяния энергии, знание которых позволяет определить вязкость разрушения, сложны по своей природе и зависят от прочности связи волокно — матрица, типа матрицы (хрупкая или пластичная), диаметра волокна, прочности волокна и т. д. Поэтому только тщательное исследование поверхностей, образовавшихся в результате разрушения, дает основание для установления соответствия экспериментально определенных значений Gu тому или иному механизму. Так, например, было сделано предположение о том, что вязкость разрушения стекло- и боропластиков связана главным образом с величиной упругой энергии, накопленной в волокнах, а соответствующая характеристика углепластиков на эпоксидном связующем — с работой докритического распространения микротрещины и работой выдергивания разорванных волокон.  [c.53]

Временное сопротивление, или предел прочности, является условным понятием, так как при его определении берут не истинную площадь шейки образца в момент разрыва, а исходную площадь сечения. Однако, как известно, величину напряжения в реальной детали также находят как отношение наибольшей нагрузки к исходному сечению детали. В очень хрупком металле шейка при разрыве выражена не резко и величина временного сопротивления (предела прочности) близка к истинному пределу прочности. Истинный или эффективный предел прочности (иначе называемый сопротивлением разрушению) представляет собой отношение нагрузки при разрыве образца к минимальной площади сечения образца после разрыва, т. е. к площади шейки. Величина временного сопротивления, как правило, не дает для технических  [c.10]


Основными задачами, которые приходится решать каждому конструктору при анализе прочности и выборе средств предотвращения разрушения конструкции, являются установление наиболее вероятных из разнообразных видов механического разрушения, встречающихся в инженерной практике, и оценка возможности разрушения конструкции в процессе ее эксплуатации. В соответствии с этим в книге сначала приводятся определения и указываются характерные признаки различных видов механического разрушения, а затем наиболее важным из них посвящаются целые главы. Вследствие большого практического значения очень подробно рассматривается усталостное разрушение, причем уделяется внимание как многоцикловой, так и малоцикловой усталости. Достаточно подробно рассматриваются также хрупкое разрушение, ползучесть, разрыв при ползучести, фреттинг-усталость, фреттинг-износ, удар, выпучивание и некоторые другие виды разрушения. Отдельная глава посвящена концентрации напряжений. Основные понятия механики разрушения излагаются при описании хрупкого и усталостного разрушения.  [c.7]

Одной из основных проблем материаловедения и металлургии является создание материалов с наибольшей вязкостью разрушения и наибольшей прочностью. Последнее требование выражено не вполне четко, так как прочность не является константой материала. Поэтому будем различать два понятия металлургическую прочность и конструкционную прочность. Под первой понимается (обычно приводимое в справочниках по материалам) значение прочности, полученное на гладких лабораторных образцах определенных размеров из материала в состоянии поставки. Прочность изделия из этого же материала (конструкционная прочность) иногда оказывается существенно меньшей. Особенно часто это происходит при приближении к области хрупкого разрушения.  [c.197]

Возникновение науки о механических свойствах в начале XX века базировалось на осредненных и статических представлениях, что каждой величине напряжения соответствует определенная величина деформации. При этом по аналогии с другими физическими свойствами предполагалось, что механические свойства материала могут быть измерены в чистом виде , как некоторые константы данного материала наподобие его плотности, параметров кристаллической решетки, коэффициента теплового расширения и т. п. Исходя из этих предположений, был получен ряд важных результатов опытное построение и применение в расчетах обобщенной кривой Людвика, лежащей в основе многих положений математической теории пластичности измерение сопротивления отрыву и его применение для различных схем перехода из хрупкого в пластическое состояние (Людвик, Иоффе, Давиденков, диаграммы механического состояния) и др. Однако дальнейшее более глубокое изучение показало ограниченную справедливость (а в ряде случаев и ошибочность) подобных представлений. Это, в частности, привело к понятию структурной чувствительности многих механических характеристик.  [c.15]

Тесные взаимосвязи существуют также между твердостью хрупких кристаллов и их поверхностной энергией. Для измерения твердости кристаллов существуют многочисленные методы, результаты которых, как правило, не сопоставимы друг с другом. Таким образом, для твердости кристаллов, которую можно охарактеризовать как сопротивление кристалла внедрению в него какого-нибудь инструмента (например, при царапании, сверлении, щлифовании), нет точного метода определения. Поэтому делается много попыток придать физический смысл понятию твердости. С одной из них мы уже познакомились, а именно с той, которая объясняет твердость, привлекая понятие энергии решетки (см. 5.6).  [c.263]

Будем различать два понятия металлургическую прочность и конструкционную прочность. Под первой понимается (обычно приводимое в справочниках по материалам) значение прочности, полученное на гладких лабораторных образцах определенных стандартных размеров из материала в состоянии поставки. Прочность изделия из этого же материала конструкционная прочность) иногда оказывается существенно меньше. Особенно часто это происходит при приближении к области хрупкого разрушения. Влияние размера конструкции. на (конструкционную) прочность будем называть масштабным эффектом.  [c.394]

Развивая схему А. Ф. Иоффе, Н. Н. Давиденков (1930—1936) ввел понятия хрупкого и вязкого сопротивления отрыву. Сопротивление отрыву он предлагал оценивать растяжением гладких образцов в жидком азоте. В 1930 г. Н. Н. Давиденков опубликовал исследование А. М. Драгоми-рова (выполненное в 1917 г.), который первым обратил внимание на связь между видом излома и характером снижения нагрузки после максимума при изгибе надрезанных образцов (кристаллические участки в изломе соответствуют срывам нагрузки). Н. Н. Давиденков связал эти наблюдения с испытаниями на ударную вязкость. В эти же годы Н. Н. Давиденков развил определение критической (переходной) температуры хрупкости при помощи построения кривых ударная вязкость — температура , им было предложено также использовать эти кривые для косвенного опре-делейия сопротивления отрыву. Н. Н. Давиденков (1938) отметил, что наиболее чувствительна к температуре испытания та часть работы сопротивления, которая затрачена после достижения максимальной величины нагрузки, и что понижение температуры в первую очередь уменьшает именно эту характеристику.  [c.396]


Анализ интенсивностей напряжений (по Ирвину Ki = = EGIn) показывает, что разрушение наступит в момент достижения критического распределения напряжений, которое устанавливается уравнениями линейной теории упругости. Введенное Ирвином понятие критического коэффициента интенсивности напряжений (Kid Кпс Km ) является в настоящее время одним из критериев сопротивления металлических материалов хрупкому разрушению. В зависимости от формы и размеров тела и трещины, а также от способа нагружения тела этот коэффициент имеет различные значения. При этом рещение целого ряда краевых задач, которые представляют собой самостоятельную область теории упругости, сводится к определению коэффициента интенсивности напряжений.  [c.25]

Критерии макроразрушения. К моменту макроразрушения хрупкого композиционного материала в его элементах накапливается определенное количество микроповреждений, т. е. происходит разрыхление композита, которое естественно сказывается на его фнзико-механических характеристиках. Для таких дисперсно разрушающихся композитов вводится понятие предельной (критической) концентрации повреждений [64, 132 и др.], при достижении которой образование макротрещины становится весьма вероятным. Если обозначить концентрацию повреждений в материале символом Сп, а предельную концентрацию С, то концентрационный критерий макроразрушения композита можно записать в виде  [c.77]

В то же время достижения в области физики твердого тела пока не позволяют давать количественные оценки макросвойств материала. При сложившейся ситуации закономерности деформирования и разрушения твердых тел могут быть описаны в форме, пригодной для практического применения, лишь на основе упрощенных понятий и определений с использованием усредненных механических характеристик. Так, понятия о хрупком и вязком разрушении могут служить основой для введения тех или иных критериев прочности.  [c.109]


Смотреть страницы где упоминается термин 9 — Определение 6 — Понятие хрупкое : [c.10]    [c.334]    [c.6]    [c.163]    [c.320]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.5 ]



ПОИСК



160, 387, 388 — Определение Понятие



© 2025 Mash-xxl.info Реклама на сайте