Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление Влияние поверхностного упрочнени

Различные способы поверхностного упрочнения (наклеп, цементация, азотирование, поверхностная закалка токами высокой частоты ИТ. п.) сильно повышают значения предела выносливости. Это учитывается введением коэффициента влияния поверхностного упрочнения /С . Путем поверхностного упрочнения деталей можно в 2—3 раза повысить сопротивление усталости деталей машин.  [c.318]

Для повышения сопротивления усталости широко применяются различные способы упрочнения поверхностей деталей, например, поверхностная закалка, химико-термическая обработка, обкатка роликами, дробеструйная обработка и др. Отношение предела выносливости упрочненных образцов к пределу выносливости неупрочненных образцов называется коэффициентом влияния поверхностного упрочнения и обозначается К . Обычно = 1,1... 2,8.  [c.283]


Влияние поверхностного упрочнения на сопротивление усталости оценивается коэффициентом  [c.153]

Тельности и температуры испытания положительное влияние поверхностного наклепа снижается и переходит в отрицательное. Так, на малой базе испытаний 10 циклов наклеп повышает сопротивление усталости при 700 и 800° С соответственно на 68,7 и 50% по сравнению с неупрочненным состоянием, а на базе 10 циклов при 700° С обкатка роликами повышает сопротивление усталости лишь на 27,5%, а при 800° С — снижает на 9,7%. Обширные экспериментальные данные о влиянии деформационного упрочнения на сопротивление усталости деталей из жаропрочных и титановых сплавов приведены в работе И. Г. Гринченко [13].  [c.172]

Влияние шероховатости поверхности на усталостную прочность не зависит от базы испытания. Влияние деформационного упрочнения на характеристики усталости с увеличением базы испытания возрастает. Например, снижение сопротивления усталости на базе 100 млн. циклов исследованных сплавов от совместного влияния параметров качества поверхностного слоя после шлифования с подачей вдоль оси образца, имеющих шероховатость поверхности V10—v5, составляет 10—30%, а на базе 1 млн. циклов — 7—20%.  [c.230]

Влияние упрочнения поверхностного слоя иа сопротивление усталости. Применение упрочнения поверхностного слоя дает значительное повышение сопротивления усталости.  [c.516]

Усталость — Сопротивление — Влияние упрочнения поверхностного слоя 5 6  [c.648]

Влияние технологических методов поверхностного упрочнения на кор-розионно-усталостную прочность деталей. Такие методы поверхностного упрочнения, как наклеп поверхности дробью или роликом, поверхностная закалка с нагрева т. в. ч., кратковременное азотирование и т. п. — весьма эффективные средства повышения сопротивления коррозионной усталости деталей машин. Причиной повышения пределов коррозионной выносливости в этих случаях являются значительные сжимающие остаточные напряжения в поверхностном слое, возникающие в процессе обработки. В табл. 16 представлены результаты усталостных испытаний образцов из стали марки 45, прошедших различную поверхностную обработку.  [c.169]

С уменьшением диаметра сечения отношение площадей поверхности заготовки и верхности контакта с инструментом к объему увеличивается. Возрастает влияние контактного трения и поверхностного упрочнения. Вследствие этого пластичность и особенно сопротивление деформированию, начиная с некоторого критического объема, поперечного размера для сплошной заготовки, толщины стенки для полой заготовки, увеличиваются.  [c.104]

Влияние технологических методов поверхностного упрочнения 150—152 Сопротивление усталости деталей с предельно острым надрезом 165—168 —  [c.222]

Известная зависимость, согласно которой пластический момент сопротивления превышает упругий, причем тем в большей степени, чем менее выгодна форма сечения, отражает ту же закономерность. Может быть установлено определенное соотношение между отношением прочностей поверхностного слоя и сердцевины и относительной толщиной слоя. Наивыгоднейшим является совпадение эпюр Ос и стн по всему сечению. Конечно, следует учитывать влияние состояния поверхностного слоя не только на Ос, но и на Он, так как, например, методы поверхностного упрочнения (цементация, азотирование, поверхностный наклеп и т. п.) создают значительные остаточные напряжения. В тонкостенных изделиях градиент Он обычно мал, а поэтому невыгоден и большой градиент Ос- По-видимому, этим объясняется малая эффективность поверхностного упрочнения для многих тонкостенных деталей.  [c.348]


Повышение предела выносливости достигается легирование.м и термической обработкой, а также улучшением конструктивных форм детали, повышением чистоты обработки поверхности и различными методами поверхностного упрочнения. Чем больше предел прочности детали, тем большее значение имеет повышение чистоты обработки поверхности и тем резче сказываются на уменьшении предела вынос ливости концентраторы напряжений надрезы, резкие переходы сече ний и др. Весьма значительное влияние на сопротивление усталости оказывают остаточные напряжения. Как правило, напряжения ежа тия в поверхностном слое резко повышают предел выносливости тогда как напряжения растяжения понижают усталостную прочность.  [c.20]

Оценка влияния характеристик сопротивления усталости и упрочненного поверхностного слоя зубьев рассматривалась на основе зависимости  [c.120]

Если рассматривать остаточные напряжения сжатия, возникающие при поверхностном пластическом деформировании, как средние напряжения цикла, то их влияние на сопротивление усталости упрочненных деталей, выражающееся в существенном увеличении разрушающих напряжений, может быть также объяснено увеличением области существования нераспространяющихся усталостных трещин. Действительно, общая диаграмма изменения пределов выносливости сталей, подверженных поверхностному наклепу, хорошо согласуется с экспериментальной диаграммой влияния средних напряжений цикла на область существования нераспространяющихся усталостных трещин.  [c.94]

Физическое состояние поверхностного слоя деталей и его напряженность, обусловленные механической обработкой, оказывают существенное влияние на эксплуатационные свойства и прежде всего на их усталостную прочность. Остаточные напряжения и деформационное упрочнение поверхностного слоя в условиях циклического нагружения и рабочих температур могут положительно и отрицательно влиять на сопротивление материала усталости. В связи с этим представляет большой научный и практический интерес изучение устойчивости поверхностного наклепа и остаточных макронапряжений после механической обработки в зависимости от температуры и продолжительности нагрева.  [c.131]

Анализ результатов испытаний на усталость показывает, что влияние методов обработки на характеристики усталости при комнатной температуре с увеличением базы испытаний возрастает. При большой базе испытаний (Л = 10 циклов) усталость сплава при комнатной температуре зависит главным образом от упрочнения поверхностного слоя (наклеп). Наибольшее значение сопротивления усталости имеют образцы с глубиной наклепа до 100 мкм после электроэрозионной обработки с последующей виброгалтовкой. Сплав после литья и электрохимической обработки показал наименьшее значение усталости по сравнению с другими методами обработки. Это можно объяснить тем, что литые образцы  [c.225]

Влияние упрочнения поверхностного слоя на сопротивление усталости  [c.466]

Рассматривая влияние давления при ЭМО, следует учитывать, что тепловое воздействие на поверхностный слой в этом случае обусловливается прохождением электрического тока. Увеличение давления понижает сопротивление контакта, соответственно уменьшая электрическую мощность и глубину высокого упрочнения б.  [c.18]

Для каждого материала существует оптимальная степень и глубина наклепа, обеспечивающие максимальное повышение сопротивления усталости. Для жаропрочных сталей и сплавов оптимальным является поверхностный слой с незначительным деформационным упрочнением = 1 4%). Повышение температуры уменьшает время и величину наклепа, до которых он оказывает положительное влияние на жаропрочных.  [c.345]

Так, на износостойкость обработанной поверхности детали (например, при трении стального вала в твердом подшипнике) большое влияние, наряду с шероховатостью, оказывают степень и глубина распространения упрочнения (наклепа) и величина остаточных напряжений в поверхностном слое [27]. При этом может иметь место такое положение, когда изменение какого-либо элемента режима резания (например, увеличение подачи), с одной стороны, приводит к понижению износостойкости (вследствие увеличения шероховатости), с другой стороны, — к повышению износостойкости (вследствие повышения упрочнения). В зависимости от того, какой из этих факторов будет преобладать, износостойкость с увеличением подачи может или увеличиваться, или уменьшаться, причем упрочнение поверхностного слоя, полученное в процессе резания, способствует повышению износостойкости только тогда, когда оно не сопровождается уменьшением величины остаточных напряжений, которые оказывают на износостойкость наибольшее влияние [28]. Остаточные напряжения снижают подвижность атомов и повышают сопротивление износу (отрыву отдельных частиц металла), причем для повышения износостойкости остаточные напряжения растяжения так же полезны, как и напряжения сжатия [27].  [c.66]

Как следует из опубликованных данных, использование покрытий в большинстве случаев ограничивается их защитными возможностями от воздействия на металл агрессивных рабочих сред. Однако это только одна из сторон возможного использования покрытий. Менее изучен вопрос о возможности упрочнения металлов покрытиями. Хотя в литературе имеется довольно широкий круг исследований, посвященных влиянию металлических [92, 93], керамических пленок [94], а также пленок сложного состава [95, 96] на жаропрочные свойства металлов, в большинстве случаев они выполнялись на малых образцах или фольгах и имели целью вскрыть общие механизмы воздействия на металл твердых поверхностных пленок. Работы, специально посвященные влиянию жаропрочных покрытий на сопротивление ползучести и длительную прочность применительно к элементам энергетического оборудования, проводятся в Институте химии силикатов АН СССР им, И.В. Гребенщикова, в ВТИ им. Ф.Э. Дзержинского и других организациях.  [c.58]


Влияние поверхностного упрочнения на повышение сопротивления усталости и коррозионной усталости образцов из стали 13Х12Н2ВМФ и 13Х12Н2МВФБА изучали в зависимости от исходной структуры, которую меняли путем изменения температуры отпуска после закалки.  [c.161]

Приведенные значения коэффициента ijJ j нельзя считать общими для всех случаев, так как для указанных сталей (особенно легированных) значительное изменение свойств (в том числе и сопротивление усталости) может быть вызвано термической и механической обработкой. Т к, Д. С. Еленевский [32], исследовавший влияние поверхностного упрочнения цементацией стали на ее сопротивление усталости при асимметричном нагружении, получил % = 0,12- 0,64.  [c.69]

Современные расчеты на сопротивление усталости отражают характер изменения напряжений, характеристики сопротивления усталости материалов, концентрацию напряжений, влияние абсолютных размеров, шероховатости поверхности и поверхностного упрочнения. Расчет обычно производят в форме проверки коэффициента запаса прочности по усталости. Для расчс .та необходимо знать постоянные а , и Тт и переменные а<, и Та составляющие напряжений. Коэффициент запаса прочности определяют по уравнению  [c.324]

ДО 60 мкм. Именно эти факторы в сочетании с малой пластичностью поверхностного слоя оказали решающее влияние на сопротивление усталости хвостовиков. Кроме того, следует отметить, что при поверхностном упрочнении деталей из жаропрочных сплавов даже при сравнительно низких температурах (бОО. .. 700° С) имеет место более интенсивное окисление поверхности. Обедненный легирующими элементами поверхностный слой под действием статических и знакопеременных нагрузок растрескивается. В зонах концентрации напряжений эти трещины возникают задолго до полного разрушения детали. Из таких трещин затем образуются усталостные трещины. Как показывают экспериментальные данные, скорость распространения трещин усталости в наклепанном слое значительно выше, чем в ненаклепанном слое с незначительной пластической деформацией. Применение наклепа при ресурсе более 1000 ч может привести к уменьшению несущей способности конструктивного элемента [5].  [c.141]

ДрайгорД. А., Пушкарев В В. Влияние механического упрочнения поверхностных слоев стали на сопротивление изнашиванию (условия трения скольжения).— ДАН УССР 1961, 10, с. 1289—1295.  [c.177]

Основная причина столь резк010 повышения коррозионно-усгалост-ной прочности за счет поверхностных видов упрочнения непосредственно связана с влиянием этих обработок на развитие электрохимическо11 неоднородности на поверхности стали в условиях коррозионной усталости. Все указанные виды поверхностного упрочнения резко увеличивают сопротивление (особенно поверхностная электрозакалка) развитии электрохимической неоднородности.  [c.78]

Изотермические нагревы в вакууме для снятия остаточных макронапряжений практически не оказывают влияния на сопротивление усталости исследованных сплавов на малых базах испытаний, начиная с базы 10 млн. циклов и меньше. При такой базе испытаний время нахождения образца в условиях высокой температуры незначительно и составляет при частотах нагружения 1000 и 5000 Гц всего от 17 до 6 мин. Маловероятно, что за такое короткое время может заметно снизиться деформационное упрочнение поверхностного слоя. Однако если учесть высокий уровень циклических напряжений, то можно предположить, что релакса-  [c.193]

Основными параметрами качества поверхностного слоя, определяющими характер влияния технологических факторов на усталость лопаток, являются глубина и степень наклепа, так как шероховатость поверхности обычно соответствует 9-му классу независимо от метода изготовления их. Если упрочнение образцов виброгалтовкой и гидродробеструйной обработкой (режимы 94—95) снижает усталостную прочность при 450° С, то при комнатной температуре в лопатках 3-й ступени ротора компрессора изделия Б этот же наклеп по сравнению с ЭХО повышает сопротивление усталости на 30—45% (база испытания 20 млн. циклов).  [c.212]

Наклеп малой интенсивности и глубины (u 7% и /i — 15 мкм) у стали ЭИ961 на малой базе испытания при 300° С дает некоторое незначительное увеличение сопротивления усталости (до 7,5%), что связано с устойчивостью деформационного упрочнения малой интенсивности при данных условиях испытаний. С увеличением базы испытания это положительное влияние наклепа малой интенсивности и глубины на характеристики усталости исчезает. Сопротивление усталости на базе 10 циклов у стали ЭИ961 с тем же поверхностным наклепом снижается примерно на 6%.  [c.222]

Для достижений максимальной эффективности упрочнения деталей, работающих в условиях статических и динамических нагрузок, рекомендуется содержание углерода в цементованном слое поддерживать в пределах 0,80—1,05%. В случае применения сталей с 0,27—0,34% С глубину цементованного слоя следует назначать в пределах 0,5—0,7 мм. Для цементуемых сталей, содержащих 0,17—0,24% С, глубину цементованного слоя принимают от 1,0 до 1,25 мм. При этом следует иметь в виду, что сопротивление усталости деталей машин без концентраторов напряжений при малых глубинах слоя зависит от прочности сердцевины, при больших — от прочности поверхностного слоя. В этом случае повышение глубины упрочненного слоя оказывается полезным только до 10—20%) радиуса детали. При глубине слоя меньше этих значений сопротивление усталости повышается с увеличением прочности сердцевины. При наличии на поверхности деталей концентраторов напряжений сопротивление усталости повышается с увеличением остаточных напряжений сжатия, а глубина слоя должна быть очень малой (1—2% радиуса детали). Главным фактором, вызывающим увеличение предела выносливости при химико-термических методах обработки деталей, являются остаточные напряжения, возникающие в материале детали в процессе упрочнения. При поверхностной закалке т. в. ч. главное влияние на повышение предела выносливости и долговечности оказывает изменение механических характеристик материала поверхностного слоя. В еще большей степени это относится к упрочнению наклепом.  [c.302]

Нами рассмотрено влияние дополнительного отпуска и температуры испытаний на стабильность упрочненного с помощью обкатки поверхностного слон, а также сопротивление усталости и коррозионной усталости некоторых нержавеющих сталей [219]. Показано, например, что дополнительный отпуск при 200 и 400°С обкатанных с усилием 800 Н образцов из стали 13Х12Н2МВФБА повышает их предел выносливости на 100 и 50 МПа соответственно. Дополнительное повышение выносливости упрочненных ППД образцов можно отнести за счет деформационного старения наклепанного слоя, которое связано с блокированием дислокаций атомами углерода и азота, содержащимися в твердом растворе. Механические свойства наклепанного слон после отпуска стали при 400°С ниже, чем после отпуска при 200°С, и деформационное старение проявляется слабее, а предел выносливости снижается.  [c.165]

Деформационное упрочнение существенно влияет на величину физических свойств. Источником этого влияния являются 5... 10% энергии, запасенной материалом из энергии, затраченной на деформирование. Так, объемная пластическая деформации приводит к увеличению твердости, удельного электросопротивления (максимально до 6%), коэрцитивной силы возрастает склонность к коррозии, и, наоборот, снижаются плотность, магн1ггная проницаемость и величина остаточной индукции ферромагнитных материалов поверхностная — повышает твердость, сопротивление коррозии.  [c.126]


Данные испытаний на усталость сплавов [535—537 и др.] и элементов конструкций [538] указывают на наличие корреляции между долговечностью и технологической наследственностью. Нами проведен анализ влияния различных видов технологических обработок на сопротивление усталости алюминиевого сплава АВТ-1. После обработки полуфабриката фрезерованием и последующей термообработки (искусственное старение при 200° С в течение 2 ч) предел выносливости снижается до 90%, а долговечность — в 3 раза. Виброупрочнение дробью, как и предполагалось, сопровождается увеличением усталостной долговечности, особенно значительным при низких амплитудах напряжений. Аналогичный эффект наблюдается и при виброударном упрочнении [535]. Термообработка после виброударного упрочнения (нагрев до 200° С, выдержка 2 ч) хотя и вызьшает снижение технологических остаточных напряжений в 2 раза, но практически полностью снимает эффект упрочнения [535]. Локальные технологические нагревы при диаметре пятна меньше 10 мм при 200°С в течение 10, 30, 60, 80 мин не оказывают влияния на статическую прочность. Увеличение температуры нагрева до 480°С с выдержкой 15 мин приводит к изменению микроструктуры в поверхностном слое, сопровождаемому снижением Од до 50% и относительного удлинения е на 20%.  [c.335]

Очевидно уменьшение шероховатости и упрочнение поверхности в процессе приработки повышает сопротивление усталости деталей. Если шероховатость поверхности во время приработки ухудшается, поверхностный слой разупрочняется, в нем появляются остаточные растягиваюш,ие напряжения или убывают по абсолютной величине исходные напряжения сжатия, то сопротивление усталости деталей уменьшается. Влияние износа на прочность при повторно-переменных нагрузках может, таким образом, быть как отрицательным, так и положительным. Это подтверждено исследованиями Д. А. Драйгора и В. Т. Шарая на ряде режимов трения скольжения. К сожалению, опытных данных недостаточно, чтобы применительно к конкретным машинам с характерными для их узлов скоростями скольжения и материалами пар трения указать давления, при которых их положительное влияние будет наибольшим, а также давления, начиная с которых пластическая деформация поверхностного слоя на приработке будет сопровождаться разрыхлением структуры. Однако некоторые режимы трения легко оценить по их влиянию на прочность.  [c.254]

К нагружению, при котором положительные свойства ме-тастабильных аустенитных сталей эффективно реализуются, относится интенсивное кавитационное воздействие. Этот часто встречающийся вид поверхностного воздействия в значительной степени снижает долговечность, производительность и эксплуатационную надежность гидротурбин,. судовых винтов, гидронасосов. Под влиянием локальных, импульсных, гидродинамических воздействий на поверхности изделий из метастабильных сталей образуется высокопрочный мартенсит деформации и упрочнение тем выше, чем интенсивнее внешнее воздействие. Это и обеспечивает высокое сопротивление данных сталей кавитационной эрозии и другим видам контактного нагружения [129, 158].  [c.287]

К настоящему времени в СССР и за рубежом усилиями многих ученых осуществлены важные исследования явлений хрупкого разрушения твердых тел как в плане решения соответствующих краевых задач механики и создания физически более обоснованных критериев разрушения, так и в области разработок методов оценки склонности конструкционных материалов к хрупкому разрушению (см., например, обзоры в работах [9, 82, 118, 145]). Необходимость в таки исследованиях обуслоЬ-лепа, с одной стороны, тем, что высокопрочные конструкционные материалы (например, жаропрочные сплавы, упрочненные стали, металлокерамические материалы, некоторые пластмассы), как правило, являются хрупкими материалами, т. е. такими, которые уже при нормальных температурах и малых скоростях нагружения разрушаются путем распространения трещины без предварительных пластических деформаций макрообъемов тела. (При низких температурах, повышенных скоростях нагружения, воздействии некоторых поверхностно-активных сред, наводороживании и в других условиях, приводящих к ограничению пластического течения конструкционного материала, его разрушение путем распространения трещины доминирует). С другой стороны, реальные условия эксплуатации конструкции всегда предусматривают наличие некоторой жидкой или газовой среды. Эта среда проникает в деформируемое тело (элемент конструкции) через его структурные несовершенства — дефекты (макро- или микротрещины, границы зерен, включений) и особенно интенсивно взаимодействует с участками тела, деформированными за предел упругости. К таким участкам относятся окрестности резких концентраторов напряжений (трещины, остроконечные полости или жесткие включения и др.). Именно в окрестности подобных дефектов среда, изменяя физико-механические свойства деформируемого материала, в первую очередь его сопротивление зарождению и развитию трещины, оказывает существенное влияние на служебные свойства (несущую способность) рабочего тела в целом.  [c.9]

V Таким образом, анализ литературных данных свидетельствует, о специфическом влиянии сред разных рриродь и свойств на дислокационную структуру поверхностей трения.. Эффекты, связанные с влиянием среды на характер структурных изменений тв,ердых, тел, весьма, разноо,бразны в своих конечньй субмикро-скопических проявлениях и экспериментальном выявлении этим в значительной Мере объясняются противоречия в их интерпретации. Важным обстоятельством в выявлении природы взаимодействия среды и твердого тела является выделение тех первичных взаимодействий, комбинациями которых определяются наблюдаемые эффекты. Сюда относятся как собственно поверхностные взаимодействия, локализующиеся, в соответствии с термодинамическими условиями, на границе раздела фаз, в слое непосредственно у этой границы, так и многочисленные эффекты, связанные с примыкающим к границе слоем конечной толщины [112]. Эти случаи включают весьма большое число явлений как увеличения, так и уменьшения сопротивления тела деформации и разрушению. Например, при упрочнении приповерхностного слоя первичным следствием можно считать затруднение движения в нем дислокаций, однако конечные результаты могут быть разными. -  [c.48]

Противоречивые сведения о влиянии инородных пленок на сопротивление сдвигу и ползучесть металлов свидетельствуют о том, что оно не однозначно. Одной из причин такого влияния мокет являться толщина пленки. Характер этого влияния, установленный в [21] для поликристаллического алюминия по-видимому, является универсальным (рис. 1.5) и связан с особенностью развития скольжения в приповерхностных слоях металла. В обзоре [23] отмечается, что пластическая деформация в начале деформирования захватывает только тонкий поверхностный слой толщиной около размера зерна, а затем распространяется во внутренние объемы. Если при деформирювании образца поверхностный слой снимается (например, электропо-лировкой), то наблюдается уменьшение моду)>я упрочнения [24]. Стравливанием поверхностных слоев на образцах из кремнистого железа установлено также [25], что скольжение зарождается у границ зерен, вь(ходящих на поверхность, и по мере повышения активизируются источники в более глубоко лежащих зернах. Особенности пластического течения в приповерхностных слоях металлов могут быть связаны со спецификой атомно-электронного строения вблизи поверхности кристалла, которая была установлена методом дифракции медленных электронов [26].  [c.12]

Наряду с конструктивными методами снижения нолп1нальных и местных напряжений существует обширный арсенал технологических способов упрочнения элементов машин (табл. 12). Наиболее распространенной является закалка деталей машин. Она обеспечивает общее упрочнение деталей, повышение их износостойкости, надежности прессовых соединений. В частности, ее разновидность — сорбитизацию — процесс с образованием структуры сорбита, эффективно используют для упрочнения крановых колес. В части увеличения усталостной прочности и износостойкости эффективны также поверхностная закалка, химико-термическая обработка, пластическое деформирование (наклеп) поверхностей и термомеханическая обработка (ТМО). Два первых процесса имеют ряд общих особенностей а) упрочнению подвергается неглубокий поверхностный слой 1материала деталей, а глубинные слон не претерпевают существенных превращений, благодаря чему металл сердцевины остается вязким, что обеспечивает высокую несущую способность детали при ударных нагрузках б) в упрочненном поверхностном слое возникают значительные сжимающие остаточные напряжения, что ослабляет влияние концентрации напряжений от внешней нагрузки и повышает сопротивление детали усталостному разрушению.  [c.51]


Смотреть страницы где упоминается термин Сопротивление Влияние поверхностного упрочнени : [c.84]    [c.4]    [c.203]    [c.167]    [c.229]    [c.276]    [c.13]    [c.697]    [c.8]    [c.73]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.153 ]



ПОИСК



Сопротивление поверхностное

Сопротивление усталости — Влияние поверхностного упрочнения

Упрочнение

Упрочнение поверхностное

Упрочнение поверхностное — Влияние

Усталость — Сопротивление — Влияние упрочнения поверхностного слоя



© 2025 Mash-xxl.info Реклама на сайте