Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Перенос тепла в осевом направлени

Это уравнение справедливо и для ламинарного течения, если Ятг=Л,т2 = 0. Здесь X — коэффициент теплопроводности А,тг, Ят2 — турбулентные коэффициенты переносе тепла в радиальном и осевом направлении г, 2 — цилиндрические координаты Го — внутренний радиус трубы, Ср — удельная теплоемкость Y — плотность w — скорость в направлении z.  [c.101]

Перенос тепла в осевом направлении 254  [c.461]

То есть пренебрегая молекулярным переносом тепла и количества движения в осевом направлении, а также всеми силами, действующими в радиальном направлении. Последнее означает, что радиальные скорости предполагаются малыми по сравнению с осевыми.  [c.137]


В задачах о теплообмене в трубах обычно предполагается, что-изменение плотности теплового потока, обусловленного теплопроводностью вдоль оси, мало по сравнению с изменением по радиусу. Иначе говоря, переносом тепла вследствие теплопроводности в осевом направлении пренебрегают. В большинстве случаев это допущение хорошо оправдывается на практике. Однако оно может привести к, значитель-  [c.196]

То, что при движении газа в каналах течение полностью ограничено твердыми стенками и расход является вполне определенным, позволяет учесть влияние вязкости, теплопроводности, диффузии и др. в предположении, что не только относительный наклон скоростей мал, но и величины скорости, давления, температуры, концентрации и других параметров также одинаковы во всех точках сечения. Изменение параметров в этом случае происходит только в осевом направлении, так что они зависят только от одной пространственной координаты, отсчитываемой вдоль осевой линии. Однородность по сечению канала течения позволяет не рассматривать механизм переноса количества движения, энергии и массы, так как предполагает, что любое воздействие на поток, связанное с влиянием трения о стенки и с подводом тепла или вещества сквозь стенки, немедленно равномерно распределяется по всему сечению канала. Отметим, что  [c.179]

Проблема еще больше усложняется, если учесть реальные термодинамические и газодинамические характеристики процессов в двигателе Стирлинга. Температуры рабочего тела, вьтхо-дящего из рабочих полостей переменного объема, не постоянны (т. е. изотермические условия не достигаются), поскольку процессы являются, по существу, адиабатными. Даже в тех условиях, когда рабочее тело течет в нагревателе и холодильнике по трубкам, наружная поверхность которых поддерживается практически при постоянной температуре, температуры рабочего тела на концах регенератора будут периодически изменяться по времени и возможны даже отдельные моменты, когда либо течение отсутствует, либо создаются встречные потоки, либо газ в одно и то же время вытекает с обоих концов регенератора [29]. Площадь теплообменной поверхности не бесконечна, а газодинамические характеристики и теплофизические свойства рабочего тела (плотность, давление, скорость, вязкость) переменны происходит кондуктивный перенос тепла в осевом направлении, аналогичный перенос по нормали к потоку не является идеальным и т. д. Чрезвычайно сложно даже качественно разобраться в реальной ситуации, не говоря уже о том, чтобы провести расчет.  [c.254]

Ряд важных физических двумерных и трехмерных задач может бы1ь решен с использованием одномерных и двумерных элементов. Эти задачи обладают осевой или центральной симметрией. Задача о радиальном потоке тепла через концентрические цилиндры с различными коэффициентами теплопроводности является одним из примеров таких задач. В достаточно длинном цилиндре поток тепла распространяется как в радиальном, так и в осевом направлениях. Поток тепла не зависит от азимутального угла 0, если граничные условия не зависят от 0. Другим примером задачи с осевой симметрией является задача о плоском течении -воды к скважине. В этом случае характеристики течения не должны зависеть от угла 0. Многие трехмерные задачи теории поля обладают осевой симметрией. Большинство из рассмотренных здесь задач связано с переносом тепла, впрочем течение воды к скважине в пористой среде — пример важной задачи гидродинамики.  [c.181]


Шульц-Грунов свидетельствует о противоположном осевом перемещении периферийно расположенных масс газа и масс газа, находящихся в приосевой области камер энергоразделения. В этом случае на фанице раздела потоков, движущихся противоположно, возникает свободная турбулентность. Пристенная турбулентность во вращающихся потоках газа проявляется значительно интенсивнее, чем при прямолинейном течении, но в процессе энергоразделения ей отводится меньщая роль. Шульц-Грунов, ссылаясь на Ричардсона [249], считает, что частицы газа, расположенные на более высоких радиальных позициях, в процессе турбулентного движения могут перемещаться к оси, а приосевые перескакивать на более высокие радиальные позиции. Частицы, перемещающиеся к центру, должны произвести работу против центробежных сил, так как они плотней приосевых. Частицы, перемещающиеся к периферии, должны произвести работу против сил, вызванных фадиентом давления. Эта механическая работа осуществляется в центробежном поле за счет кинетической энергии турбулентности, которая в свою очередь входит в общую кинетическую энергию направленного течения, т. е. элементы газа, перемещающиеся за счет радиальной составляющей пульса-ционного движения с одной радиальной позиции на другую, могут рассматриваться как рабочее тело холодильной машины, обеспечивающей под действием турбулентности перекачку энергии от приосевых слоев к периферийным. Физический процесс энергоразделения имеет аналог среди атмосферных явлений. Шмидт [256] показал, что в атмосфере тепло переносится от бо-  [c.161]


Смотреть страницы где упоминается термин Перенос тепла в осевом направлени : [c.163]    [c.254]    [c.87]    [c.17]   
Двигатели Стирлинга (1986) -- [ c.254 ]



ПОИСК



Переносье

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте