Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

N-процессы фториде лития

Выбранное выражение для скорости релаксации за счет М-процессов подтверждается экспериментами Клерка и Клеменса [129] по затуханию ультразвука в кристаллах фторида лития. Кривые теплопроводности наиболее чувствительны к выбору выражения для скорости релаксации за счет Ы-процессов в интервале от 10 до 415 К, когда частоты существенных фононов составляют примерно 10 Гц. Измерения, связанные с затуханием ультразвука, были сделаны в том же интервале температур, но на частотах от 4>10 до 10 Гц. Для медленной. поперечной моды было найдено, что затухание ультразвука пропорционально и скорость релаксации при 15 К была  [c.127]


Для получения более чистого продукта разработаны два следующих метода восстановления скандия из его фторида кальцием 1) низкотемпературный процесс, с использованием цинка для понижения температуры плавления сплава скандия и фторида лития для образования легкоплавкого шлака —СаРг  [c.9]

Единственным недостатком этого процесса является тот факт, что из-за введения цинка и фторида лития, необходимых для создания надлежащих условии работы при более низких температурах, объем тигля увеличивается втрое по сравнению с тем, который требуется для получения такою же количества скандия прямым восстановлен ем. Кроме того, введение этих реагентов безусловно увеличивает содержание прнмесей в конечном продукте.  [c.664]

Зависимость массовой энергоемкости QQ фторида лития от температуры нагрева с началом отсчета от 550 °С показана на рис. 14.3. Энергоемкость твердого фторида лития монотонно возрастает до тех пор, пока при температуре 848 С не начнется процесс плавления, увеличивающий тепловую энергию.  [c.308]

В настоящее время большинство исследований в области солевых расплавов связано с изучением расплавленных фторидов, так как фтор имеет очень низкое поперечное сечение захвата тепловых нейтронов. В этом случае для растворения делящегося вещества наиболее часто используются фториды бериллия, лития, калия, натрия, циркония и рубидия. Изучались способы очистки этого топлива и наиболее перспективным методом признан процесс испарения фторидов и ионный обмен [6]. Метод ионного обмена считается наилучшим, так как при нем запас топлива может быть на 50% меньше, а выжигание его на 30% меньше. Смесью фторидов, имеющих наименьшую температуру плавления, является эвтектика фторида натрия и бериллия, содержащая 57 мол.% фторида натрия. Точка плавления этой смеси равна 350° [71.  [c.57]

Процесс с получением цинкового сплава. Чтобы достигнуть восстановления S Fa при более низкой температуре по сравнению с той. которая потребуется для проведения описанного выше процесса, и таким образом почти исключить содержание тантала в конечном продукте, можно использовать процесс восстановления с получением цинкового сплава. Лабораторный процесс для получения тория, предложенный Вильгельмом с сотрудниками, описан в главе Торий . Чтобы получить скандий, смешивают измельченный в порошок S Fa, дважды дистиллированным металлически кальцин, цинк и фторид лития в количествах, необходимых для протекания следующей реакции  [c.664]

Смесь помешают в танталовын тигель и заваривают в защитной атмосфере гелия (150 мм рт. ст.). Затем СомСу нагревают до 1100 в инертной атмосфере. При такой температуре эвтектический сплав скандий — цинк и эвтектическая смесь фторид кальция — фторид лития находится в расплавленном состоянии, что необходимо для четкого разделения двух фаз. Жидкий сплав находится в контакте с танталом при более низкой температуре, чем мета,,1лический скандий в процессе прямого восстановления, описанного выше, поэтому в скандиевом сплаве растворяются значительно меньшие количества тантала.  [c.664]

Вариационный метод применялся Шердом и Зай-маном (см. работу Бермана и др. [30]) для оценки теплопроводности в условиях, когда существенны только Ы-процессы и точечные дефекты описание этого метода давалось в п. 1 2 гл. 6. Предположение о выполнении упомянутых условий для любого данного вещества ограничивает применение расчетов очень узкой областью температур. Результаты расчетов выражаются через отношение полной теплопроводности к теплопроводности, которая была бы при той же концентрации дефектов, но при условии, что распределение фононов определяется Ы-процессами, а точечные дефекты участвуют только в резистивном рассеянии. Это отношение равно 1, когда рассеяние на дефектах очень слабое, и растет по мере того, как растет роль дефектов при определении величины теплопроводности. Конечно, сама теплопроводность не возрастает при увеличении числа дефектов, но она уменьшается медленнее, чем в случае, когда П-про-цессы остаются наиболее существенными для теплопроводности при всех концентрациях дефектов. Проводилось сравнение с экспериментальными значениями теплопроводности для целого ряда кристаллов, содержащих точечные дефекты в виде как чужеродных атомов, так и атомов изотопов (в случае фторида лития). Расчеты должны быть справедливы при температурах порядка 0/20, и при таких температурах действительно наблюдалось очень хорошее согласие.  [c.133]


П И1 таких гомологических температурах, когда возлит практически не происходит, скорость скольжения можно измерить в процессе деформирования каким-либо способом хорошо отожженных монокристаллов. Первыми такие измерения провели Джонсон и Гилман [39] на монокристаллах фторида лития, а позже Стейн и Лоу [40] на монокристаллах твердого раствора Fe - 3Si. Методика измерений, примененная этими авторами, не может быть использована при высоких гомологических температурах, главным образом, потому, что при таких температурах дислокации могут перемещаться не только скольжением, но и переползанием. Методы высоковольтной просвечивающей электронной микроскопии позволяют наблюдать движение дислокаций непосредственно в процессе ползучести (in situ) при гомологических температурах выше 0,5, что в принципе дает возможность измерить скорость перемещения дислокаций при скольжении, В опубликованных до сих пор работах (например, [41, 42]) не удалось, однако, отличить дислокации, движущиеся скольжением, от дислокаций, перемещающихся переползанием. Следовательно, даже эта методика не дает надежной возможности измерения скорости скользящих дислокаций при ползучести.  [c.28]

Металлический уран, используемый как ядерное топливо, производят в виде слитков массой несколько сот килограммов при реакции тетрафторида урана с кальцием в специальных реакторах с обмазкой из фторида кальция. Профилированный металл можно получать, используя обычную промышленную технологию, включая прокатку, ковку, волочение и порошковую металлургию, но эти виды обработки создают преимущественную ориентацию зерен, которая не устраняется полностью последующей термообработкой. Более широко используют процесс получения отливок [48], включающий получение слитка в низкочастотной индукционной печи в графитовом тигле под вакуумом, легирование алюминием в тигле и донную разливку в промежуточный разливочный ковш, с помощью которого металл разливают в стальные изложницы, обмазанные окисью алюминия. Высокая плотность металлического урана обеспечивает очень хорошее заполнение, что позволяет изготавливать трубы небольших размеров и срезать только небольшую часть верхнего конца. Поверхность литого металла однородная и пригодна для непосредственной очехловки, а если требуются более точные размеры, поверхность окончательно под-  [c.133]

С целью разработки процесса получения металлического иттрия при более низкой температуре по сравнению с температурой указанного выше способа исследовались некоторые модификации этого основного способа металлотермического восстановления галогенидов иттрия. Изу-чалось вост становление. хлорида итгрия и бромида иттрия литием и натрием. Во все.х случая.х образующийся шлак плавится при более низкой температуре, чем фторид кальция, что способствует отделению иттрия. Однако из-за высокой температуры плавления (1509 ) металлический иттрий получается п виде спеченной массы металла, заполненной расплавленным шлаком, а при более высоких температурах, когда мегалл собирается в виде отдельной фазы, в большинстве случаев получаются очень плохие вы.ходы.  [c.250]

Отливки условно подразделяют на две группы отливки сплопшого сечения (рис. 14.12) и отливки с внутренними несквозными полостями (рис. 14.13). Если в обоих случаях внешняя поверхность отливки соответствует конфигурации литейной формы-кристаллизатора, то внутреннюю полость в ней выполняют с помощью водоохлаждаемого металлическое го стержня 3 (рис. 14.13). При литье корпуса запорной арматуры (рис. 14.13) в медный кристаллизатор 2 заливают предварительно расплавленный шлак (фторид кальция), в который погружают электрода V к ним и затравке 7, находящейся в нижней части кристаллизатора, подводят электрический ток около 20 А с напряжением 45—60 В на 1 мм диаметра электрода. Далее процесс протекает по ранее изло-  [c.358]

В лабораторных условиях изучены процессы, связанные с летучестью и гидролизом криолита в зависимости от его модуля. Показано, что потери криолита за счет испарения и гидролиза уменьшаются с повышением модуля криолита. Потери, связанные с наличием кристаллогидрата фторида алюминия в криолите, можно уменьшить, повышая температуру сушкн. Табл. I. Список лит. 3 назв.  [c.123]

В процессе плавки медных сплавов происходит интенсивное растворение кислорода и образование твердых, жидких и газообразных оксидов элементов, входящих в состав сплава. Одновременно сплавы насыщаются и водородом. Для защиты от насыщения газами при плавке медных сплавов применяют древесны й уголь и флюсы (бура, сода, фториды, стекло, хлористый барий, поваренная соль). При плавке алюминиевых бронз используют покровный флюс, состоящий из соды (ЫвоСОз) и криолита — (ЫазА1Ре). При плавке латуней в качестве флюса используют 5102. Медные сплавы обычно раскисляют фосфором в количестве 0,01—0,03% массы расплава, литием в количестве 0,01—0,02 % или фосфористой бронзой, содержащей 90 % Си и 10 % Р. Перед разливкой в литейные формы медные сплавы рафинируют хлористым марганцем, вводя его в расплав в количестве 0,03—0,1 % массы расплава или продувая азотом в кол1 честве 0,25— 0,5 м на 1 т расплава. Для измельчения зерна в отливках из оловянных и алюминиевых бронз в расплав вводят ванадий, титан, бор, цирконий в количестве 0,15—0,2 % массы расплава.  [c.217]


С помощью ванн хроматирования и травления в кислоте невозможно избавиться от всех вредных последствий абразивных обработок. В то же время один из электролитических процессов, а именно фторидное анодирование при высоком напряжении в растворе кислого фтористого аммония, очень эффективно удаляет посторонние катодные металлические частицы. При этом процессе поверхность самого магния быстро превращается в нерастворимый и непроводящий фторид магния, и на этом данная реакция прекращается. В дальнейшем ток авто.матически сосредотачивается на локальных металлических катодах, которые остаются проводящими и либо растворяются, либо удаляются с поверхности. Активным катодом может служить также углерод в форме графита, остающегося в результате применения смазок форм при прессовании и литье под давлением. Такая графитовая пленка не растворяется при электролизе, но она отделяется и изолируется от поверхности металла слоем фторида магния. В таких условиях графит менее вреден, чем в случае прямого контакта с металлом, а кроме того, он легче удаляется путем обработки в хромовой кислоте или в горячем растворе едкого натра (в отсутствие предварительного фторидного анодирования эти обработки не вполне эффективны).  [c.134]


Смотреть страницы где упоминается термин N-процессы фториде лития : [c.13]    [c.664]    [c.51]    [c.250]   
Теплопроводность твердых тел (1979) -- [ c.127 ]



ПОИСК



504—505 ( ЭЛЛ) литые

X оно литы

Литий

Фториды



© 2025 Mash-xxl.info Реклама на сайте