Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел деформационного упрочнени физический

Средний размер частиц второй фазы и расстояние между ними. Определяет степень взаимодействия движущихся дислокаций с частицами (барьерный эффект), степень деформационного упрочнения. С размером частнц также связаны предел тек> ести и твердость, физические свойства ( ii. 1.11).  [c.182]

В работах [3, 22] было показано, что периодичность и стадийность процессов пластической деформации при статическом растяжении для случая поликристаллических металлов и сплавов с ОЦК-решеткой, имеющих физический предел текучести, может быть рассмотрена с учетом накопления повреждений (рис. 2.2). Следует отметить, что это наиболее сложный вид диаграммы статического растяжения металлических материалов. Усложнить эту диаграмму можно лишь, добавив участок деформации прерывистой текучести, которая иногда наблюдается на стадии деформационного упрочнения, например, у низкоуглеродистых сталей в интервале температур испытания 100-300 °С. В случае ГЦК-металлов и сплавов обычно на такой диаграмме отсутствуют зуб и площадка текучести. Рассмотрев стадийность деформации и накопления повреждений на примере такой сложной диаграммы, легче перейти к более простым случаям.  [c.40]


Для анализа теорий физического предела выносливости важны процессы, происходящие в периоде зарождения усталостных трещин (деформационное упрочнение/разупрочнение, структурные и фазовые изменения, механизмы зарождения микротрещин, условия нераспространения малых усталостных трещин при напряжении, равном пределу выносливости).  [c.156]

Интересные данные были получены в работе [23], в которой не обнаружили физического предела вьшосливости у чистого титана, однако прибавление к титану до 0,7 ат. % С, N и В, способствующих деформационному старению, привело к появлению резкого и очень высокого предела усталости. Авторы [23] предположили, что процесс усталости представляет собой комбинацию трех процессов повреждаемости, деформационного упрочнения и деформационного старения. Первые два процесса являются функциями от приложенного напряжения, а третий -нет. Следовательно, равновесие возможно при определенном напряжении, и это напряжение является пределом вьшосливости.  [c.161]

В ряде работ [7, 14] физический предел выносливости рассматривается как результат проявления динамического деформационного старения. С точки зрения Дж. К. Леви [20], в условиях циклического деформирования при комнатной температуре наблюдается относительно медленное, но эффективное закрепление дислокаций в результате динамического деформационного старения. В этом случае накопление усталостного поврежде-ния и деформационное старение рассматриваются как конкурирующие процессы. Предполагается, что при циклическом нагружении выше предела вьшосливости интенсивность повреждения больше интенсивности упрочнения, обусловленного динамическим деформационным старением. Было предположено, что кривая усталости стали, склонной к деформационному старению, лежит между кривой усталости нестареющей стали и кривой усталости стали, полностью состаренной перед испытанием (рис. 5.2), Возможность развития деформационного старения при напряжениях, близких к пределу усталости, обусловлена тем, что в процессе циклического нагружения углеродистых сталей при указанных напряжениях (даже при напряжениях ниже предела усталости) наблюдается локальная пластическая деформация. Наличие этой деформации, значительная длительность испытания на уровне напряжений, близких к пределу усталости, возможность температурных пиков в местах локальной пластической деформации и, наконец, влияние самого процесса циклического  [c.159]

Эти стадии хорошо выявляются в условиях нагружения с постоянной общей (упругой и пластической) амплитудой деформации за цикл. В случае испытаггий только с постоянной амплитудой пластической деформации за цикл металлических материалов, не имеющих физического предела текучести, период зарождения усталостных трещин может сразу начинаться со стадии деформационного упрочнения или разупрочнения. Кроме того, для выяв-  [c.19]

Особое место среди указанных параметров занимает предел упругости Оу, который, как следует из схемы на рис. 3.33, является исходной точкой процесса деформационного упрочнения, т. е. фактически пороговым напряжением начала макродеформацин. Очевидно, что в этой интерпретации величина (Ту является одной из наиболее физически обоснованных прочностных характеристик среди тех, которые определяются в механических испытаниях и используются для описания механического поведения металлических материалов. Истинность величины Оу подтверждается в ряде случаев (при отсутствии начальных стадий) возможностью определения этой величины непосредственно из перестроенных в координатах 5 — кривых нагружения (рис. 3.18, а и б).  [c.155]


Медь имеет физический предел выносливости, достигаемый на большей базе нагружений, чем сталь. Например, предел выносливости, определенный на образцах диаметром 4 мм из отожженой (850 °С, 1 ч в вакууме) меди чистотой 99,95 % (ав = 241 МПа сго,2=23 МПа ф = 67 %) при частоте циклов нагружения 17,7 кГц, был достигнут только после 9,8-108 лов нагружения fl9]. Амплитуда деформации, соответствующая пределу выносливости, оказалась равной 3,8-10 . В этом случае достижение физического предела выносливости связано с деформационным упрочнением материала, обусловливающим остановку развития усталостных трещин. Действительно, испытания в тех же условиях образцов, упрочненных растяжением на 15 %, показали, что предел выносливости не достигается для них даже на базе испытаний больше Ю циклов нагружения.  [c.35]

Научная и практическая актуальность проблемы исследования физических закономерностей пластической деформации и разрушения поверхностных слоев твердого тела обусловлена тем обстоятельством, что свободная поверхность, являясь специфическим видом плоского дефекта в кристалле, оказьтает сзш1ественное влияние на его физико-механические свойства, в частности на упругую стадию деформирования, предел пропорциональности и предел текучести на общий характер кривой напряжение—деформация и различные стадии деформационного упрочнения (на коэффициенты деформационного упрочнения и длительность отдельных стадий) на процессы хрупкого и усталостного разрушения, ползучести, рекристаллизации и др. Знание особенностей и основных закономерностей микродеформации и разрушения поверхностных слоев материалов необходимо не только применительно к обычным методам деформировани (растяжение., сжатие, кручение, изгиб), но и в условиях реализации различного рода контактных воздействий, с которыми связаны многочисленные технологические процессы обработки материалов давлением (ковка, штамповка, прокатка и др.), а также процессы трения, износа, схватывания, соединения материалов в твердой фазе, поверхностных методов обработки и упрочнения, шлифования, полирования, обработки металлов резанием и др.  [c.7]

Стадии циклической микротекучести и циклической текучести 5 арактерны для металлов и сплавов, имеющих физический предел текучести, и их можно изучать при определенной методике усталостных испытаний. Для металлических материалов, не имеющих физического предела текучести, усталостный процесс начинается с кратковременной стадии циклической микротекучести (которая часто протекает в процессе вывода испытательной машины на заданную амплитуду нагружения), а затем следует стадия циклического деформационного упрочнения (разупрочнения), Эту стадию следует рассматривать как конкуренцию двух кинетических процессов пластической деформации и разрушения (по терминологии И. А. Одинга - упрочнения и разупрочнения). Поэтому в области циклического упрочнения (третья стадия в периоде зарождения усталостных трещин, см. рис. 2.10) пунктирной линией отмечено геометрическое место точек, соответствующих началу появления поверхностных субмикротрещин размером 1-3 мкм. Склонность металлических материалов к циклическому упрочнению или разупрочнению определяется отношением предела прочности к условному пределу текучести. Известно, что все материалы с Ов/ о,2 < 1Д разупроч-няются при циклическом деформировании, тогда как материалы, для которых ав/сТо 2 = 1>4 и выше, циклически упрочняются. При 1,2 < Ов/с о.2 >1.4 может происходить либо упрочнение, либо разупрочнение.  [c.82]

Классификация физического состояния поверхностного слоя, приведенная в табл. 2.4, учитывает лишь параметры, связанные с резанием. В процессе резания происходит пластическое деформирование металла, сопровождающееся выделением тепла, В результате образуется поверхностный слой, степень деформации которого, деформационное упрочнение (наклеп), еубструктура (размеры блоков и их разорнентировка), кристаллическая структура (плотмость дислокаций, концентрация вакансий) существенно отличаются от аналогичных характеристик всего объема металла. В деформированном поверхностном слое, как правило, возрастают характеристики сопротивления деформированию и разрушению — пределы упругости, текучести, прочности, сни-  [c.142]

С увеличением степени предварительной деформации вклад в упрочнение за счет статического деформационного старения воа-растает. Независимо от характера предварительного деформирования (статического или динамического) на кривых усталости отсутствует четко выраженный физический предел выносливости. По мнению авторов [30], это объясняется тем, что в результате предварительното деформирования материал утрачивает способность к динамическому деформационному старению непосредственно в процессе циклического нагружения. Тепловая обработка предварительно деформированной стали может приводить к существенному повышению циклической прочности как вследствие протекания процессов старения, так и в результате выравнивания остаточных напряжений по объему металла.  [c.15]

В.И. Трефилов), в которых рассматриваются начальные участки кривых деформирования на основе учета процессов скорости движения и размножения дислокаций [76-77]. Однако и эти представления требуют дальнейшего уточнения [77] и не могут объяснить всех экспериментальных данных по проявлению физического предела текучести у металлов и сплавов с различными кристаллическими решетками [69,72]. Так, наличие физического предела текучести у ГЦК-металлов связывают с различными причинами геометрическим разупрочнением, деформационным разупрочнением, упрочнением поверхностного слоя, атмосферами Сузуки и др. [67]. В работе [63] отмечается, что теория Гильмана-Джонсона-Хана не учитывает гетерогенной природы поликристаллических тел и стадию микротекучести, а также не объясняет снижение предела текучести с увеличением размера зерна. Кроме того, она не предсказывает нижний предел текучести и величину деформации Людерса-Чернова [79]. Со своей стороны добавим, что эта теория не рассматривает преимущественное течение приповерхностных слоев металла на начальных стадиях деформирования и эффект динамического деформационного старения у железа и низкоуглеродистых сталей [13],  [c.171]



Смотреть страницы где упоминается термин Предел деформационного упрочнени физический : [c.27]    [c.3]    [c.51]    [c.343]    [c.53]    [c.70]   
Теория пластичности (1987) -- [ c.156 ]



ПОИСК



Деформационное упрочнение

Деформационные швы

Упрочнение



© 2025 Mash-xxl.info Реклама на сайте