Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел деформационного упрочнени

На участке АВ (рис. 51) происходит пластическая деформация, сопровождающаяся упрочнением металла. С увеличением деформации интенсивность упрочнения уменьшается, наступает предел деформационного упрочнения. После точки А упругая деформация не исчезает. Пока на тело действуют внешние силы, расстояние между соседними атомами изменено по сравнению с периодом кристаллической решетки. На участке АВ  [c.136]

Предел деформационного упрочнения 167  [c.349]

Все вышеперечисленные методы дают качественную оценку технического состояния оборудования. При их проведении обнаруживаются объемные опасные дефекты, такие как трещины, подрезы, непровары, поры. Однако необходимо отметить, что появление таких дефектов является лишь заключительной стадией процессов, происходящих на микроуровне и сопровождающихся изменением характеристик прочности, пластичности и трещиностойкости. Одним из таких процессов является охрупчивание (деформационное упрочнение) материала, вызывающее повышение временного сопротивления Св, предела текучести Пг и снижение запаса пластичности, ударной вязкости и трещиностойкости. Это, в свою очередь, увеличивает вероятность хрупкого разрушения даже при температурах выше предела хладноломкости.  [c.337]


Таким образом, в зависимости от свойств материала (ц.). его склонности к деформационному упрочнению и вида напряженного состояния в зоне предразрушения угол наклона локальных слоев текучести 6 может изменяться в широких пределах (0 = 45°...69° 18 —для плоской деформации и 0 = 35 16. .. 61 °28 — для простого растяжения при 1, = 0,125...0,5). Эти теоретические данные хорошо согласуются со многими экспериментами механики разрушения /26/, а влияние деформационного упрочнения на наклон полос текучести объясняет эффект расширения пластических зон в окрестности трещины.  [c.91]

Во всех расчетных формулах в качестве напряжения Оо принимался предел прочности Ов на основании известного положения о том, что напряжение на границе пластической зоны перед концом трещины выше предела текучести при одноосном растяжении, особенно при наличии поперечного стеснения деформации и деформационного упрочнения.  [c.265]

Влияние упрочнения поверхности. Для повышения несущей способности деталей широко используют разные способы поверхностного упрочнения цементацию, нитроцементацию, азотирование, поверхностную закалку токами высокой частоты (т. в. ч.), деформационное упрочнение (наклеп) накаткой роликами или дробеструйной обработкой. Упрочнение поверхности деталей значительно повышает предел выносливости, что и учитывается к оэффициентом влияния поверхностного упрочнения Км (табл. 0.4).  [c.15]

В третьей главе приведен обзор по деформационному упрочнению поликристал-лических ОЦК-металлов. Логическим центром данной главы и, может быть, всей книги является раздел о структурном обосновании перестройки кривых нагружения в координатах 5 — V"е (истинное напряжение— истинная деформация в степени 0,5), которая представляет эффективный метод исследования закономерностей деформационного упрочнения в зависимости от самых различных внутренних и внешних факторов. Именно данный метод позволил связать воедино все этапы пластической деформации, выстроив в одну цепочку предел упругости, критические деформации начала и конца образования ячеистой дислокационной структуры, ее начальный размер и закон дальнейшего изменения. В конечном счете, даже условие перехода к разрушению (пластическому) также определяется коэффициентом деформационного упрочнения.  [c.4]

Влияние же температуры на интенсивность деформационного упрочнения, напряжение течения и предел прочности оказывается [18] прямо противоположным влиянию на предел текучести. Например, у металлов с ГЦК-решеткой интенсивность деформационного упрочнения (да/дг) и предел прочности существенно возрастают с понижением температуры. Так как предел текучести почти не зависит от температуры, то отношение пределов прочности и текучести при низких температурах возрастает, данное обстоятельство делает металлы с ГЦК-ре-шеткой особенно перспективными для использования при низких температурах. У металлов с ОЦК-решеткой интенсивность деформационного упрочнения с понижением температуры либо сохраняет постоянное значение, либо уменьшается. Вследствие этого кривая температурной зависимости предела прочности либо приблизительно эквидистантна кривой предела текучести, либо отклоняется вниз с понижением температуры. Таким образом, пластичность (в данном случае — равномерная деформация) металлов с ОЦК-решеткой при низких температурах снижается, для многих из них характерен переход от вязкого поведения к хрупко.му что резко ограничивает возможность их исполь-  [c.17]


Механические свойства металлов с ГПУ-решеткой определяются отношением кристаллографических параметров с а, а также содержанием примесей и обычно являются средними между характеристиками металлов с ГЦК- и ОЦК-решетками. Например, у титана предел текучести и интенсивность деформационного упрочнения с понижением температуры возрастают, так что отношение пределов прочности и текучести либо сохраняется постоянным, либо даже возрастает при низких температурах. Особенно наглядным можно считать поведение при низких температурах циркония [29], пластичность которого при низких температурах существенно увеличивается (с 12 до 40 %) за счет протекания механического двойникования, стимулирующего работу призматических и пирамидальных систем скольжения [18].  [c.18]

Предел текучести — это фактически напряжение, которое необходимо приложить, чтобы скорость пластической деформации стала соизмеримой со скоростью машинного деформирования и могла быть достигнута некоторая определенная величина макродеформации (например, для предела текучести — 0,2 %). Другими словами, внешнее напряжение должно быть поднято до уровня, который обеспечивает при заданных условиях деформации (температура и скорость испытания) необходимые плотность дислокаций и скорость их движения в материале с конкретной структурой. Причем скорость дислокаций, вернее, их средняя скорость, является основным параметром, поскольку плотность дислокаций не может изменяться произвольно, так как она ограничена деформационным упрочнением. Поскольку усреднение скорости дислокаций проводится на достаточно больших отрезках, то оно учитывает преодоление множества различных препятствий, размеры которых колеблются от долей межатомных расстояний до размера зерна. Более того, можно сказать, что эти препятствия фактически запрограммированы при выборе состава сплава, его термической и термомеханической обработок.  [c.87]

Рассмотренные выше особенности деформационного упрочнения ОЦК-металлов и сплавов с пониженной энергией дефекта упаковки налагают отпечаток на эволюцию дислокационной структуры. В частности, на диаграмме структурных состояний ванадия (рис. 3.31) это отражается в изменении в широких пределах деформационных интервалов отдельных областей [341]. Диаграмма содержит пять областей, разделенных температурными зависимостями критических деформаций 1 — область крайне неоднородной дислокационной структуры,  [c.150]

Как было показано в разделах 3.5 и 3.6, перестройка кривых нагружения в координатах 5 — е -- позволяет выявить на параболической-кривой упрочнения (схема на рис. 3.33) в пределах области однородной деформации три стадии с различными коэффициентами деформационного упрочнения К. Наличие трех стадий, как следует из резуль-  [c.153]

Основными параметрами общей схемы процесса деформационного упрочнения (см. рис. 3.33) являются [48] — предел упругости,  [c.154]

Как видно из рис. 3.35, в широком интервале деформаций отношение Кх/Оу является постоянной величиной. Это означает, что сопротивление пластической деформации на пределе упругости определяет закон деформационного упрочнения при дальнейшем после Оу течении. Другими словами, отношение Д1/Оу, по-видимому, является связующим звеном или переходом между микроуровнем деформации, или движением отдельных дислокаций на пределе упругости, и следующим за ним уровнем деформации, определяемым уже взаимодействием дислокационных ансамблей [27].  [c.156]

Влияние исходного размера зерна на соотношение вкладов слагаемых выражения (4.10) в деформационное упрочнение неоднозначно для различных металлов и условий испытания (рис. 4.11). Предел упругости, как и следовало ожидать, является структурно чувствительной характеристикой, остальные слагаемые не зависят от размера зерна. Отсюда следует, что роль границ зерен, с одной стороны, как источников дислокаций, с другой, как барьеров на пути движущихся дислокаций, ничтожно мала на стадии существования развитой дислокационной структуры в металле.  [c.173]

Другой фактор, который еще не учитывается в теориях сплошной среды, связан с большим различием пластических деформаций, получаемых в действительности на разных сплавах. Ясно, что для теоретического определения пластичности следует принимать во внимание большое количество металлургических параметров. Некоторые из них, например объемное содержание, размер, форма частиц и расстояние между ними, хрупкая прочность частиц и прочность связей с частицами по поверхности раздела, предел текучести и степень деформационного упрочнения матрицы, а также анизотропия формы зерен и частиц и расстояния между частицами, уже упоминались. Достигнут значительный прогресс как в теоретическом, так и в экспериментальном плане по изучению влияния основных параметров, но остается расхождение между действительным поведением и теоретическими результатами.  [c.79]

К числу упрочняющих факторов относятся процессы тренировки материала действием кратковременных Напряжении, превосходящих предел текучести деформационное упрочнение, вызываемое структурными изменениями в напряженных микрообъемах материала самопроизвольно протекающие процессы старения, сопровождающиеся кристаллической перестройкой материала и рассеиванием внутренних напряжений. Положительно влияет приспособляемость конструкции — общие плИ местные Пластические дефор.мапии, возникающие под действием Перегрузок п вызывающие перераспределение нагрузок. Определенный упрочняющий эффект дает износ первых стадий (сглаживание микронеровностей), способствующий увеличению фактической площади контактирующих поверхностей, снижению пиков давлений и выравниванию нагрузки на поверхности.  [c.150]


Для предотвращения пластических микродеформаций целесообразно применять подкладные шайбы большого диаметра. Резьбу, опорные поверхности шайб, гаек, головок болтов, а тадже поверхности стыков рекомендуется обрабатывать не ниже 6-го класса шероховатости и обеспечивать строгую перпендикулярность опорных поверхностей относительно оси болтов. Болты следует затягивать регламентированным усилием. Соединения рекомендуется подвергать предварительной осадке путем затяжки болтов под напряжением, близким к пределу текучести материала, с целью расплющивания микронеровностей в резьбе и на опорных поверхностях и деформационного упрочнения материала болтов.  [c.444]

Эти стадии хорошо выявляются в условиях нагружения с постоянной общей (упругой и пластической) амплитудой деформации за цикл. В случае испытаггий только с постоянной амплитудой пластической деформации за цикл металлических материалов, не имеющих физического предела текучести, период зарождения усталостных трещин может сразу начинаться со стадии деформационного упрочнения или разупрочнения. Кроме того, для выяв-  [c.19]

Стадия циклического деформационного упрочнения (разупрочнения) завершается достижением линии необратимых циклических повреждений. Одним из самых ранних методов необратимой степени повреждаемости при усталости является метод построения линии, предложенной X. Френчем (1933г.), заключающийся в тренировке образца выше предела выносливости и последующем циклическом деформировании при напряжении, равном пределу выносливости (рис. 28). Если образец при перегрузке разрушается на пределе выносливости (до достижения базового числа циклов), значит он пoJ/y-чил необратимое повреждение. Если после перегрузки на уровень предела выносливости образец простоял базовое число циклов, то он не поврежден и на нем ставится стрелка вверх. Границей необратимо поврежденных образцов и образцов, которые после перегрузки достигают базы испытания, и является линия необратимых повреждений.  [c.48]

Графическая интерпретация полученных выражений представлена на рис. 3.57. Как видно, для материалов с повышенной склонностью к деформационному упрочнению (т е с меньшими значениями характерны более широкие диапазоны относительных размеров мягких прослоек [Крт]. При этом изменение параметра двухосности нагружения стенки оболочковой конструкции в пределах от О до 1 также ведет к расширению диапазона [Кр ]. В качестве примера на номограмме показан путь (обозначен индексом 1) нахождения диапазона значений [Кр ] для  [c.191]

Зуб текучести и наличие верхнего и нижнего пределов текучести на кривых а—е о. ц. к. металлов объясняются блокировкой дислокаций примесными атомами внедрения. С увеличением чистоты металла (например, зонной очисткой) эти явления исчезают. Верхнему пределу текучести обычно соответствует пластическая деформация 0,02—0,5%. Разница между верхним и нижним пределами текучести может быть в два раза. За зубом текучести следует площадка текучести, в пределах которой пластическая деформация распространяется по образцу в виде движущихся фронтов полос Людерса —Чернова. Когда эти полосы покрывают весь образец, площадка текучести кончается, а на кривой а—г появляется участок деформационного упрочнения. По мере повышения температуры испытания площадка и зуб текучести сменяются зубчатой кривой а— е (явление Портевена—Ле-Шателье). С повышением температуры интенсивность деформационного упрочнения становится существенно выше, чем при более низких температурах, так как примесные атомы диффундируют достаточно быстро, чтобы сопровождать движущуюся дислокацию. Такая блокировка движущихся дислокаций способствует увеличению dafde, и приложенное напряжение преодолевает эту блокировку путем отрыва дислокации или генерированием новых дислокаций.  [c.233]

Предел текучести олова, например, снижается вдвое, уменьшается также коэффициент деформационного упрочнения при испытании в масле, содержап1ем олеиновую кислоту (поверхностно-актив-нос вещество). Благодаря адсорбированному слою поверхностно-активных B nie TB снижается уровень поверхностной энергии, что приводит к облегчению выхода дислокации на поверхность кристаллических тел.  [c.57]

Механические свойства зависят не только от количества примеси, но и от ее химического состава. Так, при содержании в кристаллах N301 от 10-3 до 1,6-10- % (мол.) СаСЬ или 2-10—1,65 10- % (мол.) РЬС1г изменялись все характеристики механических свойств от —196 до 400 °С—деформационное упрочнение, предел текучести и микротвердость [12].  [c.22]

Одной из основных целей написания данной монографии было желание найти взаимосвязь между указанными тремя этапами пределом текучести, деформационным упрочнением и разрушением — с помощью, например, одной общей независимой переменной — деформации. Другая цель заключалась в попытке дать достаточно подробный обзор работ по деформационному упрочнению в поликристаллически.х ОЦК-металлах. В данной области явно ощущается недостаток обобщающих работ по деформационному упрочнению, и это находится в противоречии хотя бы с тем, что по количеству работ, посвященных изучению деформационных структур и закопо-меорнстей разрушения, ОЦК-металлы существенно превосходят в последнее время все другие материалы.  [c.3]

Способность многих материалов к пластической деформации сопровождается, как правило, повышением сопротивления разрушению, т. е. разруше 1И1о предшествует деформационное упрочнение, что имеет в технике исключительно важное значение. Тйкая способность определяет возможность не только придания изделиям нужной формы, но и дополнительного их упрочнения за счет различных технологических операций обработки давлением. Характерно, что даже обработка резанием без способности материала к неупругим деформациям, как в случае абсолютно хрупких материалов, была бы возможна только в очень ограниченных пределах.  [c.5]

В работах [328, 330, 332, 339, 3551 было показано, что описание-кривой нагружения ОЦК-поликристаллов уравнением параболического типа (3.57) значительно расширяет возможности экспериментального изучения процесса деформационного упрочнения. Обобщением-результатов этих работ, а также ряда литературных данных [9, 289,, 290] является общая схема деформационного упрочнения поликристал-лических ОЦК-металлов и сплавов [47, 48] (рис. 3.33), которая отражает сложный многостадийный характер процесса, обусловленный поэтапной перестройкой дислокационной структуры при деформации. Считается, что перестройка структуры (от относительно однородного распределения дислокаций через сплетения и клубки к дислокационной ячеистой структуре) вызывает соответствующее изменение внутренних напряжений [2961, следовательно, и параметров процесса деформационного упрочнения. Данная схема основывается на анализе и обобщении результатов механических испытаний и структурных исследований, проведенных на десяти сплавах ОЦК-металлов [47, 481, которые различались по величине модуля упругости, энергии дефекта упаковки, наличию дисперсных упрочняющих фаз, уровню примесных элементов и размеру зерна (в пределах одного сплава). В частности, были исследованы при испытаниях на растяжение в интервале температур 0,08—0,5Гпл однофазные и дисперсноупрочненные сплавы-на основе железа (армко, сталь 45, Ре + 3,2 % 81), хрома, молибдена (МЧВП с размером зерна 100 и 40 мкм, Мо Н- 4,5 % (об.) Т1М, ЦМ-10-и ванадия (технически чистый ванадий), а также сплавы ванадия и ниобия с нитридами соответственно титана и циркония [95].  [c.153]


Особое место среди указанных параметров занимает предел упругости Оу, который, как следует из схемы на рис. 3.33, является исходной точкой процесса деформационного упрочнения, т. е. фактически пороговым напряжением начала макродеформацин. Очевидно, что в этой интерпретации величина (Ту является одной из наиболее физически обоснованных прочностных характеристик среди тех, которые определяются в механических испытаниях и используются для описания механического поведения металлических материалов. Истинность величины Оу подтверждается в ряде случаев (при отсутствии начальных стадий) возможностью определения этой величины непосредственно из перестроенных в координатах 5 — кривых нагружения (рис. 3.18, а и б).  [c.155]

Установленная закономерность деформационного упрочнения для широкого интервала деформаций, которую выражает уравнение (4.10), позволяет выполнять практически полный расчет диаграммы нагружения. Такой расчет выполняется в несколько операций. На первом этапе машинная диаграмма Р — t (А1) рассчитывается на участке, равномерной деформации по методике, подробно изложенной в разделе 3.5, и перестраивается в координатах S — Из перестроенной диаграммы определяются основные параметры деформационного упрочнения Оу, Ki, Кг, Кз, Vе-1, Vс помощью которых находится также величина Оу по уравнению (3.78). Необходимая для раечета величина параметра Ку определяется в предварительных испытаниях путем построения кривых Холла — Петча для предела упругости Оу. Учитывая, что вклад третьего слагаемого уравнения (4.10), в которое входит параметр Ку, обычно невелик (10—20 МПа), можно в первом приближении ограничиться литературными данными по Ку для предела текучести.  [c.170]

Пример соотношения вклада каждого слагаемого в величину напряжения течения, а также его изменение по мере нарастания степени деформации показан на рис. 4.9. Материалами для исследования служили молибденовый сплав МЧВП с размером зерна 75 мкм, испытанный при 100 °С, и армко-железо с размером зерна 15 мкм, испытанное при 20 °С. Как видно из рис. 4.9, вклад предела упругости, естественно, остается постоянным на всем протяжении деформации ц является тем исходным уровнем напряжения, на который накладываются все последующие составляющие деформационного упрочнения,  [c.172]

В нормализованных и отожженных углеродистых сталях в качестве упрочняющей составляющей служит перлит. В малоуглеродистых сталях с 0,011—0,225%-ным содержанием С перлит непосредственно не влияет на предел текучести, но увеличивает напряжение текучести и степень деформационного упрочнения, а также уменьшает равномерное удлинение, общую пластичность и разрушающее напряжение [33]. В сталях с более высоким содержанием углерода предел текучести также увеличивается с увеличением содержания перлита, а в полностью перлитных структурах предел текучести является функцией расстояния между пластинками перлита [30, 34]. Охрупчивающее влияние больших количеств перлита показано на рис. 13. Увеличение содержания перлита, т. е. процентного содержания углерода, приводит к повышению переходной температуры хрупкости и уменьшению ударной вязкости выше переходной температуры.  [c.83]

Из полученных результатов вытекают два важных следствия. Во-первых, становится очевидным, что известное эмпирическое соотношение Лу = 3<Тт не выполняется в наноструктурных материалах, если исследуются исходные и отожженные состояния. Этот факт может быть объяснен следующим образом. Как известно, предел текучести соответствует началу пластической деформации, но при измерениях микротвердости средняя величина деформации составляет 9-10% [346]. Следовательно, можно ожидать, что в случае сильного деформационного упрочнения в отожженных образцах будет существовать значительное различие в соотношении между Ну и (Ту в сравнении с исходными наноструктурными образцами, где, как показал эксперимент, деформационное упрочнение незначительно. Эти результаты указывают на необходимость осторожного использования соотношения Ну = Зстт при исследовании механических свойств нано- и субмикрокристал-лических материалов.  [c.201]


Смотреть страницы где упоминается термин Предел деформационного упрочнени : [c.167]    [c.29]    [c.47]    [c.259]    [c.14]    [c.27]    [c.57]    [c.3]    [c.75]    [c.93]    [c.116]    [c.165]    [c.166]    [c.173]    [c.178]    [c.215]    [c.184]    [c.201]    [c.17]   
Теория пластичности (1987) -- [ c.167 ]



ПОИСК



Деформационное упрочнение

Деформационные швы

Упрочнение



© 2025 Mash-xxl.info Реклама на сайте