Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Питтинго стойкость

Как показали эксперименты в Панамском канале, содержание никеля до 5 % (при 0,1 % С) не сказывается на коррозионной стойкости стали в морской воде [45]. В первый год испытаний глубина питтингов на никельсодержащей стали была меньше, чем на стали с 0,24 % С, но при длительных испытаниях глубина питтингов на углеродистой стали была заметно меньше (после восьми лет испытаний на стали с 5 % Ni питтинг был на 77 % глубже, чем на углеродистой) [47 ].  [c.126]

Медно-цинковые сплавы имеют лучшие, чем медь, физические свойства и обладают большей стойкостью к ударной коррозии. Поэтому трубы конденсаторов преимущественно изготавливают не из меди, а из латуни. Коррозионное разрушение латуней обычно происходит вследствие обесцинкования, питтинга или КРН. Склонность латуней к коррозии такого рода, за исключе-  [c.330]


Благодаря стойкости к питтингу и коррозионно-эрозионным разрушениям, титановые трубы успешно применяют в теплообменниках, охлаждаемых морской водой [26].  [c.376]

Нержавеющая сталь представляет собой сплав на железной основе, в котором главным легирующим компонентом является хром в количестве не менее 12 %. Благодаря содержанию хрома нержавеющей стали легко пассивируются и потому имеют хорошую коррозионную стойкость во многих часто встречающихся средах. Однако в неблагоприятных условиях даже нержавеющие стали могут подвергаться, например равномерной, щелевой, межкристаллитной коррозии, питтингу или коррозионному растрескиванию под напряжением.  [c.109]

Для сплавов, склонных к питтинговой коррозии, важной характеристикой коррозии является коэффициент питтингообразования — отношение средней глубины всех питтингов к условной глубине, вычисленной по потере массы при допущении, что коррозия носит равномерный характер. Если коэффициент питтингообразования равен 50 или 100, это означает, что глубина проникновения коррозии в отдельных точках в 50—100 раз больше по сравнению со средними разрушениями, вычисленными по потере массы металла. Коэффициент питтингообразования зависит как от общей коррозионной стойкости сплава, так и от склонности к точечной коррозии.  [c.22]

Некоторые сорта аустенитных сталей содержат 2—3% Мо или же один из элементов N5 или Т1 в концентрациях, определяемых минимальным содержанием углерода (например, в 5 раз больше минимальной его концентрации). Добавки молибдена вводятся для повышения стойкости к питтингу. Например, сталь 316 — это по-существу сталь 304, содержащая 2,5% Мо. Исследования показывают, что такие добавки молибдена влияют на поведение стали либо очень слабо [70, 91], либо отрицательным образом [66, 69, 81, 82]. Очевидно, это связано с тем, что при 1,5% Мо наблюдается минимум стойкости против КР [66—68]. В присутствии молибдена концентрация углерода, соответствующая наименьшей стойкости против КР, сдвигается от 0,06 до 0,30% [66]. Было высказано предположение [66], что вследствие химической близости Мо п Сг (оба элементы VI а группы) добавка молибдена может оказаться вредной, если суммарное их содержание (Сг4-Мо) попадает в область концентраций, не благоприятных с точки зрения добавок хрома (т. е. 15—18%). Имеются данные, подтверждающие это предположение [68, 70].  [c.72]

Питтинговая коррозия. Некоторое представление о стойкости низколегированных сталей к питтинговой коррозии в условиях сурового морского климата дают результаты испытаний в Зоне Панамского канала. Некоторые из пластинок после 8-летней экспозиции оказались перфорированными, т. е. максимальная глубина питтинга превысила  [c.48]

Хорошая и даже отличная стойкость к питтингу  [c.77]

При экспозиции на среднем уровне прилива сплавы никель — хром и никель —хром — железо склонны к питтингу ц другим формам местной коррозии [40]. Как и в случае нержавеющих сталей, коррозии подвергаются участки поверхности металла под приросшими морскими организмами и в щелях. Однако в целом названные сплавы проявляют в зоне прилива несколько большую стойкость к коррозии, чем аусте-нитные нержавеющие стали.  [c.81]


С точки зрения потерь массы можно считать, что сплав Монель 400 корродирует примерно так же, как цинк. Гораздо меньшее значение средней скорости коррозии наблюдалось для алюминиевого сплава 6061, однако этот сплав испытывал значительную питтинговую коррозию [40]. Медноникелевый сплав и алюминиевая бронза превосходили Монель 400 как по стойкости к питтингу, так и в отношении общих потерь массы.  [c.83]

Опыт эксплуатации теплообменников из сплава 70—30 на 20 эсминцах ВМС США показал, что после 20-летней эксплуатации забивается в среднем лишь 0,37 % конденсаторных трубок. Некоторые из трубок разрушились со стороны, находящейся в контакте с паром. Еще более высокая стойкость сплава 70—30 отмечается на береговых установках, использующих чистую морскую воду. При использовании загрязненной воды скорость забивания трубок продуктами коррозии примерно в 9 раз выше, однако и в этом случае результаты значительно лучше, чем для других медных сплавов. В более агрессивных условиях из двух рассматриваемых сплавов системы медь — никель чаще используется сплав 70—30, обладающий более высокой общей коррозионной стойкостью. В то же время в стоячей морской воде этот сплав характеризуется большей склонностью к питтингу, чем сплав 90—10.  [c.114]

Наиболее высокую стойкость продемонстрировал сплав 6061, для которого максимальная глубина питтинга составила от 0,08 до 0,18 мм.  [c.132]

На рис. 71 показаны сравнительные данные о питтинговой и щелевой коррозии сплава 1100 в состояниях термообработки F и Н14. Питтинг был небольшим в обоих случаях, а стойкость к щелевой коррозии после термообработки Н14 была несколько выше. Для некоторых сплавов серии 1000 при глубоком погружении наблюдался более сильный питтинг, чем в поверхностных водах. На рис. 72 приведены данные о питтинговой коррозии ряда сплавов у поверхности океана и на глубине 720 м [93]. Для сплава 1180 различие наиболее существенно. На сплаве 1100-Н14 максимальная глубина питтинга после 123-дневной экспозиции на глубине 1720 м достигла 1,0 мм, тогда как на глубине  [c.144]

Результаты экспозиции на глубине 720 м, представленные на рис. 73, показывают, что сплав 1180-Н14 был более склонен к питтингу, чем сплавы серии 5000 и сплав 6061. Обычно можно ожидать, что сплавы с меньшим содержанием примесей обладают более высокой стойкостью к питтинговой коррозии, однако в данных условиях экспозиции это не справедливо.  [c.144]

Питтинги 16, 121, 123-128 Питтинго стойкость 125, 126, 144, 186,288  [c.318]

При изучении влияния условий теплопередачи на питтинго-стойкость чистой и обычной стали 62Х18Н11 в 0,1 М / а01 при 10-2  [c.75]

Чистый алюминий мягок и непрочен. Легируют его в основном для повышения прочности. Для того чтобы можно было воспользоваться высокой коррозионной стойкостью чистого алюминия, высокопрочные сплавы покрывают слоем чистого алюминия или более коррозионностойкого сплава (например, сплава Мп—А1 с 1 % Мп), который более электроотрицателен в ряду напряжений, чем основной металл. Наружный слой называют плакирующим, а сам двухслойный металл — алькледом. Плакирующий металл катодно заш,ищает основу, выполняя функцию протекторного покрытия. Его действие аналогично действию цинкового покрытия на стали. Помимо катодной защиты от питтинга покрытие из менее благородного металла защищает также от межкри-сталлитной коррозии и коррозионного растрескивания под напряжением (КРН). Это особенно важно, когда основной высокопрочный сплав приобретает склонность к этим видам коррозии в процессе производства или при случайном нагреве до высокой температуры.  [c.342]

Легирование никеля медью несколько повышает стойкость металла в восстановительных средах (например, в неокислительных кислотах). Ввиду повышенной стойкости меди к питтингу, склонность сплавов никель—медь к питтингообразованию в морской воде ниже, чем у никеля, а сами питтинги в большинстве случаев неглубокие. При содержании более 60—70 ат. % Си (62—72 % по массе) сплав теряет характерную для никеля способность пассивироваться и по своему поведению приближается к меди (см. разд. 5.6.1), сохраняя, однако, заметно более высокую стойкость к ударной коррозии. Медно-никелевые сплавы с 10—30 % Ni (купроникель) не подвергаются питтингу в неподвижной морской воде и обладают высокой стойкостью в быстро движущейся морской воде. Такие сплавы, содержаш,ие кроме того от нескольких десятых до 1,75 % Fe, что еще более повышает стойкость к ударной коррозии, нашли применение для труб конденсаторов, работающих на морской воде. Сплав с 70 % Ni (мо-нель) подвержен питтингу в стоячей морской воде, и его лучше всего применять только в быстро движущейся аэрированной морской воде, где он равномерно пассивируется. Питтинг не образуется в условиях, когда обеспечивается катодная защита, например при контакте сплава с более активным металлом, таким как железо.  [c.361]

При введении в никель хрома он приобретает стойкость в окислителях (в частности, HNO3 и Н2СГО4). Определенное по измерениям критической плотности тока минимальное массовое содержание хрома, необходимое для анодной пассивации сплава в серной кислоте, составляет 14 % [3]. Однако сплавы с хромом более чувствительны к воздействию С1 и НС1. В неподвижной морской воде на них образуются более глубокие питтинги. Хром повышает также стойкость никеля к окислению при повышенных температурах. Широкое применение нашел сплав, содержащий 20 % Сг и 80 % Ni (см. разд. Ю.11.3).  [c.361]


Так как бинарные никелево-молибденовые сплавы имеют плохие физико-механические свойства (низкая пластичность, плохая обрабатываемость), то в них вводят Другие элементы, например железо, для создания тройных или многокомпонентных сплавов. Они тоже довольно трудно обрабатываются, но все же заметно легче, чем двухкомпонентные. В соляной и серной кислотах стойкость этих сплавов выше, чем никеля, однако в окислительных средах (например, в азотной кислоте) повышения стойкости не отмечается. Коррозионный потенциал сплавов Ni—Мо—Fe лежит в акт11вной области, поэтому на них образуется питтинг в сильнокислых средах, в которых эти сплавы обычно исполЬ зуют на практике.  [c.362]

Особым коррозионным свойством циркония является его стойкость в щелочах всех концентраций при температурах вплоть до температуры кипения. Он стоек также в расплаве гидроксида натрия. В этом отношении он отличается от тантала и, в меньшей степени, от титана, которые разрушаются под воздействием горячих щелочей. Цирконий стоек в соляной и азотной кислотах любой концентрации и в растворах серной кислоты с содержанием H2SO4 < 70 % вплоть до температур кипения этих сред. В НС1 и подобных средах оптимальной стойкостью обладает металл с низким содержанием углерода (<0,06 %). В кипящей 20 % НС1 после определенного времени выдержки наблюдается резкое возрастание скорости коррозии конечная скорость составляет обычно менее 0,11 мм/год [461. Цирконий не стоек в окислительных растворах хлоридов металлов (например, в растворах Fe lg наблюдается питтинг), а также в HF и кремнефтористоводородной кислоте.  [c.379]

Высокой коррозионной стойкостью в атмосферных условиях обладают алюминиевые сплавы. Несмотря на то, что коррозия алюминиевых сплавов, как правило, развивается с образованием питтингов, постоянная смена участков активащ1и и репассиващш на поверхности металла приводит к почти равномерной коррозии. Однако необходимо учесть влияние структурных составляющих, которые могут облегчить возникновение межкристаллитной, расслаивающей коррозии и коррозионного растрескивания. Анодные включения преимущественно растворяются, и если они расположены в виде цепочки по границам зерен, то коррозия  [c.12]

Наиболее стойкой к питтинговой коррозии оказалась сталь марки Саникро 28, которая не обнаружила питтинговых поражений при температуре 95 °С в 3%-ном растворе Na l, имитирующем по концентрации хлоридов морскую воду. У стали марки SAF 2205 критическая температура питтинга была на том же уровне, что у сплава 825. Сталь, отличающаяся высокой стойкостью к питтинговой коррозии, обладает также высокой стойкостью к щелевой коррозии, поскольку в обоих случаях стойкость определяется массовой долей хрома и молибдена.  [c.22]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]

Высокая коррозионная стойкость алюминия и его сплавов в условиях агрессивных сред, характерных для нефтедобывающей промышленности, делает перспективным их использование в качестве конструкционного материала для изготовления буровых, насоснокомпрессорных труб и деталей газопромыслового оборудования. Известно, что алюминий и его сплавы подвергаются коррозионному разрушению в результате общего растворения, питтинга, межкристаллит-ной коррозии, коррозии под напряжением, расслаивающейся коррозии. Вид коррозионного разрушения определяется составом алюминиевого сплава, зависит от состава коррозионной среды и условий эксплуатации. Так, при использовании бурильных труб из алюминиевых сплавов возможно развитие контактной коррозии за счет соединения их с остальными замками. В зазорах резьбовых соединений происходят процессы щелевой коррозии, а при нагружении таких соединений пере-меннылА нагрузками возникают процессы фреттинг-коррозии. Значительное влияние на характер коррозионного разрушения оказывает pH коррозионно-активной среды. Практика эксплуатации алюминиевых труб показывает, что с увеличением pH от 1 до 13 меняется характер коррозионного поражения равномерная коррозия — в сильнощелочной, щелевая - в сильно кислой областях, питтинговая - при pH = 3-11.  [c.120]

У алюминиевых покрытий, наносимых методом погружения в расплавленный металл, пленки окислов на поверхности более плотные, чем у плакируемых покрытий. Следовательно, их коррозионная стойкость выше. Если эти покрытия наносят с соблюдением соответствующих правил, то они не имеют пористости. Слой сплава, полученный между внешним слоем чистого алюминия и сталью, обеспечивает адгезию и предотвращает любой вид коррозии, распространяющийся через межфазную границу покрытие — основной металл в том случае, если основной металл подвергается на отдельных участках локальной питтинго-вой коррозии. Коррозия, проникающая через межфазную границу, иногда встречается на напыляемых или плакируемых покрытиях.  [c.108]

Алюминий и его сплавы [88]. Чистый алюминий (в том числе плакированные сплавы) является коррозионно-стойким металлом даже в сильно агрессив-НЫ1Х атмосферах. С увеличением степени легирования алюминия снижается его коррозионная стойкость, особенно в приморских и промышленных атмосферах. Для сплавов алюминия характерны локальные виды коррозии (питтинг, расслаивающая коррозия и др.). Глубина питтинга для сплавов алюминия (Д16, 01915, АМГ6) за 5 лет испытаний изменяется от 0,04 до 0,1 мкм в сельской атмосфере и достигает 0,3—0,4 мкм в промышленной атмосфере [89]. В приморской атмосфере, помимо питтинга, обнаруживается расслаивающая коррозия.  [c.92]

Богатые никелем сплавы железа ведут себя во многом аналогично чистому никелю и в отношеннп коррозионной стойкости в морских условиях ничем не выделяются. Очень высокой стойкостью в морских атмосферах отличаются сплавы никель — хром, такие как Инконель 600, содержащий 15 % Сг. В условиях погружения эти сплавы, подобно аустенитным нержавеющим сталям, склонны к местной коррозии, в частности к питтингу,  [c.75]

Для определения скоростей коррозии никелевые пластинки экспонировались в морских атмосферах. При испытаниях на стенде в 25 м от океана в Кюр-Биче потери массы за 7 лет соответствовали скорости коррозии 0,25 мкм/год, а максимальная глубина питтинга была равна 36 мкм [41]. В Кристобале (Зона Панамского канала) средняя скорость коррозии за 16 лет составила 0,19 мкм/год, а питтинг был пренебрежимо мал [40]. Эти результаты, полученные при экспозиции тонких никелевых пластин, согласуются с хорошо известной на практике высокой стойкостью никелевых покрытий. Скорости коррозии никеля в морской и промышленной атмосферах примерно одинаковы. Это видно, например, из представленных в табл. 26 результатов коррозионных испытаний, проведенных ASTM [39]. Следует отметить усиление коррозии в морской атмосфере, содержащей промышленные загрязнения, как, например, в Сэнди-Хуке. Скорость коррозии в этом месте, расположенном около Нью-Йорка, почти на порядок выше, чем в местах с незагрязненной морской атмосферой, что объясняется присутствием в воздухе соединений серы.  [c.76]


Средняя скорость коррозии сплава Монель 400 в тех же условиях была равна 4.3 мкм/год, а максимальная глубина ниттинга за 16 лет — 0,61 мм. Очевидно, что некоторое повышение стойкости к питтинговой коррозии (по сравнению с никелем) объясняется наличием в составе сплава меди. Весь имеющийся опыт свидетельствует, что при экспозиции в зоне прилива глубина питтинга на сплаве Монель 400 редко превышает 1,3 мм. При этом питтинги развиваются медленно и после  [c.79]

При полном погружении сплав Инколой 825 может испытывать локальную коррозию в неподвижной морской воде при обрастании и в щелях. Тем не менее стойкость этого сплава к питтинговой и щелевой коррозии гораздо выше, чем у аустенитных нержавеющих сталей. Так, в одном из экспериментов скорость коррозии сплава Инколой 825 в условиях погружения составила при 3-летней экспозиции 0,46 мкм/год. С такой же скоростью протекала и коррозия этого сплава на среднем уровне прилива и в зоне брызг. При этом локальная коррозия не наблюдалась ни в условиях хорошей аэрации в зоне брызг, ни при полном погружении. В условиях погружения, правда, возможно появление отдельных питтингов, если степень аэрации морской воды недостаточна. В табл. 30 приведены результаты испытаний сплава Инколой 825 па малых глубинах. Инколой 825 стоек к коррозионному растрескиванию под напряжением в горячей морской воде, поэтому применяется в теплообменниках, использующих морскую воду.  [c.86]

Купроникель 70—30 плюс железо о с X Отличная стойкость в быстром потоке, более склонен к питтингу в стоячей морской воде, чем сплав 90—10  [c.98]

Бронзы. Скорости коррозии некоторых бронз, полученные при 16-летией экспозиции в Тихом океане вблизи Зоны Панамского канала, приведены в табл. 38. Можно отметить хорошую стойкость алюминиевой бронзы (1,27 мкм/год). Скорости коррозии кремнистой и фосфористой бронз примерно одинаковы ( 5 мкм/год) и близки к скорости коррозии меди. Максимальная глубина питтинга (от 0,9 до 1,5 мм) несколько меньше, чем для меди.  [c.104]

Данные о питтпнговой коррозии алюминиевых сплавов трудно сравнивать из-за большого разброса результатов, получаемых для разных пластинок одного и того же сплава. Однажды возникнув, питтинг может сначала очень быстро расти, после чего рост может замедлиться или даже совсем прекратиться. Тем не менее при длительной экспозиции мол Но установить некоторые закономерности коррозионного поведения различных сплавов или одного сплава в разных состояниях термообработки. Например, как видно из табл. 54, сплав 6061 в состоянии термообработки Т4 обладает более высокой стойкостью к питтингу, чем  [c.138]

Сравнительно высокой стойкостью к коррозии в щелевых условиях обладают сплавы серии 5000. В табл. 55 представлены результаты 12-мсс испытаний, организованных ВМС США в Ки-Уэсте [91]. Наблюдается корреляция между этими данными и зависимостью питтинговой коррозии от потенциала, приведенной на рис. 67. Например, для всех менее стойких к щелевой коррозии сплавов — 3003-Н14, 6061-Тб, 1100F, 7075-Т7351 II 7079-Т6 — потенциал в морской воде соответствовал склонности к питтингу, а для сплавов серии 5000, более стойких к коррозии в щелях, наблюдались значения потенциала, указывающие на относительный иммунитет к питтингу. Наличие такой корреляции позволяет использовать рис. 67 для оценки склонности алюминиевых сплавов к обеим названным формам коррозии.  [c.141]

Необходимо отметить, что пит-случайпый характер и поведение образцов в разных партиях может несколько отличаться. Например, при экспозиции на глубине 1720 м на некоторых образцах коррозия была очень сильной, а на других питтингов не было совсем. На рис. 73 приведены данные Айлора [93], позволяющие сравнить стойкость к питтинговой коррозии сплава 6061-Т4 и других алюминиевых сплавов. Видно, что в этом случае сплав 6061 ие уступает многим сплавам серии 5000, в частности 5050-Н34 и 5052-Н34.  [c.151]


Смотреть страницы где упоминается термин Питтинго стойкость : [c.419]    [c.368]    [c.375]    [c.450]    [c.452]    [c.454]    [c.454]    [c.19]    [c.20]    [c.6]    [c.87]    [c.19]    [c.81]    [c.135]    [c.139]   
Коррозия и защита от коррозии (2002) -- [ c.125 , c.126 , c.144 , c.186 , c.288 ]



ПОИСК



Питтинг



© 2025 Mash-xxl.info Реклама на сайте