Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

218, 219 жаростойкие тугоплавкие

Фиг. 245. Технологичность, жаропрочность и жаростойкость тугоплавких Фиг. 245. Технологичность, жаропрочность и жаростойкость тугоплавких

Сплав обладает наивысшей жаростойкостью в том случае, когда окалина, находящаяся в контакте с металлом, состоит исключительно из жаростойкого тугоплавкого окисла [736, 741, 742].  [c.662]

Низкая жаростойкость тугоплавких металлов — Мо, W, Та, Nb создает большие затруднения при использовании их в качестве жаропрочных материалов. Применение вакуума и защитных сред при технологической обработке и эксплуатации тугоплавких металлов вызывает в некоторых  [c.491]

Объемным легированием не удалось придать достаточную жаростойкость тугоплавким сплавам. Наиболее реальный путь решения проблемы защиты их от окисления — это разработка составов и спо- собов получения защитных покрытий, т. е. поверхностное легирование несколькими элементами.  [c.561]

Жаропрочность ряда металлов можно повысить, упрочнив металлическую основу введением в нее мелкодисперсных частиц тугоплавких соединений, главным образом различных окислов (материалы типа САП, т. е. спеченного алюминиевого порошка). Жаростойкость этих материалов, являющихся перспективными для применения в различных областях техники, и механизм их окисления исследованы автором, Б. К. Опарой, Т. Г. Кравченко и О. А. Пашковой на кафедре коррозии металлов МИСиС.  [c.109]

К первой группе относят металлокерамические сплавы на основе тугоплавких металлов Мо, МЬ, Та, Эти сплавы обладают недостаточной жаростойкостью и не могут быть использованы без защитных покрытий, предохраняющих их от окисления. Применение жаропрочных металлов 2г, Сг, V, Мо, Та и др. и сплавов на их основе возможно до температур около 2000° С. Использование сплавов на основе позволяет повысить рабочую температуру до 2500—2700° С.  [c.229]

При изготовлении литых деталей в двигателестроении для авиации и космических кораблей, буровых установок применяются многообразные металлы и сплавы особого назначения (жаропрочные, жаростойкие, износостойкие и др.). Как правило, свойства чистых жаропрочных металлов соответствуют одновременно всем этим требованиям. Определенным и заданным физико-механическим свойствам отвечают специальные сплавы на основе жаропрочных металлов, легированные тугоплавкими элементами.  [c.30]

При легировании сталей тугоплавкими элементами (Сг, W, Ti, Мо) значительно повышаются конструкционные показатели и фи-зико-механические свойства, износостойкость, жаропрочность и жаростойкость и другие свойства.  [c.44]

Несмотря на то что тугоплавкие металлы (Сг, Та, Nb, Мо, W, Re) имеют высокую температуру плавления, они не обладают термодинамической устойчивостью в окислительной атмосфере. Это относится даже к хрому, если его сравнивать с жаростойкими Ni-Сг-сплавами. Такое явление создает определенное ограничение для использования тугоплавких металлов и их сплавов при повышенных температурах в окислительной атмосфере.  [c.433]

Таблица 15.13. Теплопроводности жаростойких и жаропрочных сплавов и сплавов на основе тугоплавких металлов [7, 22] Таблица 15.13. Теплопроводности жаростойких и жаропрочных сплавов и сплавов на основе тугоплавких металлов [7, 22]

Жаростойкость силицидов тугоплавких металлов, их защитные свойства в большой мере зависят от структуры, чистоты, пористости, стехиометрического состава и других факторов, которые определяются условиями получения этих материалов.  [c.68]

Тот факт, что кремнеземные пленки отлично сосуществуют с рядом бескислородных соединений кремния, защищают их от разрушения и обладают ценными физико-химическими свойствами, послужил для нас поводом выбрать направление для синтеза жаростойких покрытий из бескислородных тугоплавких соединений (наполнитель) и силикатного стекла (связка).  [c.192]

Для жаростойкой защиты молибдена и вольфрама широкое распространение получило диффузионное силицирование. Благодаря летучести высших окислов молибдена и вольфрама на поверхности силицидов этих металлов при их окислении образуется пленка практически чистого кремнезема, что и определяет их высокую жаростойкость. Однако в силицидных покрытиях на тугоплавких металлах вследствие различия коэффициентов термического расширения металлов и силицидов всегда имеются микротрещины, образующиеся при охлаждении образцов от тем-  [c.4]

Сазонова М. В., А и и е н А. А., Горбатова Г. Н. Защитные покрытия для тугоплавких материалов. — В кн. Жаростойкие и теплостойкие покрытия. Л., 1969, с. 191—199.  [c.139]

В качестве дисперсной фазы были использованы порошки сложных тугоплавких сплавов на основе систем N1—Сг—А1, №—А1, Ре—Сг—А1, Со—Сг—А1, отличающиеся высокой жаростойкостью.  [c.143]

Новые покрытия (ЭВК-75 и ЭВК-103) отличаются тем, что обладают хорошей технологичностью вследствие достаточного содержания стеклофазы и высокой жаростойкостью за счет тугоплавких кристаллических фаз, образующихся как при обжиге, так и в процессе эксплуатации.  [c.165]

Выбор теплоизоляционных покрытий сопряжен с разрешением известных противоречий. Обычно покрытие одновременно с тепловой защитой должно обеспечивать защиту от газовой коррозии, т. е. обладать достаточной жаростойкостью. В первом случае желательно применять пористое тугоплавкое покрытие, во втором — наиболее плотное. Увеличение толщины покрытия, приводящее к улучшению теплоизоляции и жаростойкости, отрицательно сказывается на прочности соединения с основным металлом. Поиски оптимальных путей повышения теплоизоляции без уменьшения жаростойкости и прочности соединения — одна из важных задач при выборе и разработке технологии напыления защитных покрытий.  [c.89]

При комнатной температуре тугоплавкие металлы имеют высокую коррозионную стойкость, но при высоких температурах, вследствие высокой скорости окисления, недостаточной плотности прилегания к металлу и летучести их окислов они, за исключением хрома, отличаются очень плохой жаростойкостью. Если принять наиболее плохую жаростойкость (сопротивление окислению) молибдена за 1, то соответственно жаростойкость у разных металлов будет у тантала 1,4 у ниобия 2,3 у вольфрама 14 у циркония 27 у титана 54 у хрома 320 у нержавеющей стали 1Х18Н9Т—1600. Поэтому для создания необходимой жаростойкости тугоплавкйе металлы и их сплавы следует применять с защитными покрытиями, а в отдельных случаях создавать у них путем легирования более прочные и менее летучие пленки окислов на поверхности. Способность обрабатываться давлением, резанием, подвергаться сварке, отливке и т. д., т. е. технологичность у тугоплавких металлов, очень низкая, особенно у вольфрама. Поэтому среди тугоплавких металлов наибольшее применение в настоящее время получили молибден и ниобий, технологичность которых сравнительно удовлетворительна.  [c.405]

Одно из весьма распространенных защитных покрытий для тугоплавких металлов и сплавов, прежде всего на основе ниобия и тантала — покрытие, наносимое из расплавов 8п—А1, содержащих от 5 до 50% (по массе) А1. В зависимости от состава сплава и материала основы выбирают временный и температурный режим обработки. Обзор способов повыщения жаростойкости тугоплавких металлов (ЫЬ, Та, Мо н и ) и их сплавов с помощью 5п—А1 покрытий сделан в работе [336]. Основную защитную функцию выполняет алюминидное покрытие, а олово, по мнению автора работы [336], играет роль мягкого напряженного барьера между окислом, образующимся на поверхности, и интерметаллндом, облегчая доставку алюминия к местам повреждения покрытия и обеспечивая тем самым быстрое залечивание этих повреждений. Именно в способности самозалечивания и состоит одно из основных преимуществ 5п—А1 покрытий перед другими. Свойства покрытий улучщают легированием сплава такими элементами, как Т1, Сг, Мо, 51. В этом случае обычно образуются композиционные покрытия на основе силицидов и алюминидов.  [c.298]

Подобие двойных диаграмм состояния и одинаковая кристаллическая структура ниобия, тантала, молибдена и вольфрама и образующихся силицидов предопределяют сходство в закономерностях образования и строения диффузионного слоя. Известно, что высокая жаростойкость тугоплавких металлов достигается при создании на поверхности металлов дисилицидов — Ме81з.  [c.73]

Низкая жаростойкость тугоплавких металлов обусловлена летучестью их оксидов ( 1г, Ru, Os ), легкоплавкостью и летучестью оксидов ( Мо, V, Re ), разрушением иленки за счет У м О, 2 м>2,5 (Та, Nb, W ), исиарением самих металлов. В этих условиях нанра-влениями жаростойкого легирования являются нолучение сложных нелетучих оксидов (Nb+Ti, Mo+Ni, Mo+Ni+Mn) ириближение УмтОшп/г/Ум в 1 (Nb+Mo) исиользование эле-  [c.63]


Основным недостатком большинства тугоплавких металлов является низкая сопротивляемость окислению. Исключение составляет хром, хотя и его жаростойкость ниже, чем никельхро-мовых сплавов.  [c.533]

В третьей группе представлены металлокерамические сплавы на основе тугоплавких окислов с добавкой металлов (керметы), обладающие высокой жаростойкостью, хотя и отличающиеся от рассмотренных металлокерамическнх сплавов меньшей жаропрочностью. Кроме того, они характеризуются недостаточной теплопроводностью и малой стойкостью к действию тепловых ударов. Наибольшее применение получили композиции из окиси А1 и Сг или Л1 и окиси А1.  [c.230]

Хорошо известные жаропрочные и жаростойкие сплавы, применяемые при изготовлении двигателей внутреннего сгорания, литейной оснастки (пресс-форм), кузнечных штампов, турбовинтовых и газотурбинных двигателей, работающих при средних (300 - 500°С) и высокотемпературных режимах (700 - 1000°С), подразделяют на четыре группы жапропрочные сплавы па основе железа (элементы четвертого периода никеля, кобальта) и жаропрочные сплавы на основе тугоплавких металлов (элементы пятого и шестого периодов).  [c.32]

В последние годы ишроко применяют металлизационный метод плазменного напыления, позволяющий наносить любые материалы, в том числе тугоплавкие металлы и окислы, создавая покрытия с заданными эксплуатационными свойствами износостойкие, коррозионно-стойкие, жаростойкие, электроизоляционные и др.  [c.110]

Электронно-лучевая снарка позволяет получать сварные соединения из окончательно обработанных деталей без их существенных деформаций (например, блоки зубчатых колес взамен крупных поковок). с лектронно-лучевая сварка гарантирует высокое качество сварного соединения детг1лей из тугоплавких металлов, жаропрочных, жаростойких и других материалов со скоростью, не уступающей дугоной сварке.  [c.155]

Важнейшее требование к материалам для нагревательных приборов (жаростойким сплавам) — высокая рабочая температура — может быть удовлетворено при достаточно высокой температуре плавления материала и полном отсутствии окисления или окислении с образованием тугоплавких нелетучих, непористых окислов, предохраняющих от дальнейшего окисления. Неокисляющимся материалом с вы-  [c.258]

Исследование свойств покрытий, большинство которых в момент наплавления представляет собой пиросуспензии или пирозоли, позволило разработать основные принципы регулирования свойств расплавов или пиросуспензий и найти физико-химические закономерности образования покрытий из расплавленного состояния. Установлены некоторые общие закономерности зависимости жаростойкости покрытий от скорости процессов диффузии, развивающихся на границе раздела покрытие—тугоплавкий металл. Показано, что скорость процессов диффузии атомов одного и того же элемента определяется свойствами соединений, в которые входит рассматриваемый элемент.  [c.4]

Экспериментально показано, что из большого количества бескислородных тугоплавких соединений — карбидов, боридов, силицидов, нитридов переходных металлов и кремния — для синтеза жаростойких покрытий наиболее перспективными являются соединения кремния Мо312, 81С, 31зК4 и др. [1—6].  [c.192]

Присутствие в стекле элементов первой и второй групп периодической системы, а также элементов группы железа из-за их интенсивного взаимодействия с наполнителем, в частности, дисилицидом молибдена, резко снижает жаростойкость покрытий. Так, стеклосилицидное покрытие с тугоплавкой борокремнеземной связкой защищает поверхностно силицированный графит от окисления при 1500° в течение более чем 100 час. аналогичное покрытие, связка которого содержит 3% окиси лития, в первые сутки становится пористым и теряет защитные свойства.  [c.194]

Одной из валснейших областей применения тугоплавких соединений являются жаростойкие покрытия. Силициды, алюминиды и бериллиды тугоплавких металлов при высоких температурах (свыше 1000°) обладают превосходной стойкостью против окисления. Однако при низких или так называемых промен уточных) температурах эти и некоторые другие соединения ведут себя аномально. Аномалия заключается в том, что как отдельные образцы, так, и покрытия из перечисленных материалов в окислительных средах разрушаются, в течение относительно короткого времени превращаясь в порошкообразную массу. В критическом темпе-  [c.286]

На основе бескислородных тугоплавких соединений кремния Мо312, 81С (наполнитель) и бесщелочного борокремнеземного стекла (связка) созданы покрытия, эффективно защищающие графит и борсодержащие материалы от окисления в воздухе при температурах до 1200—1600°. Показано, что на процесс формирования и физико-химические свойства покрытий оказывает влияние природа наполнителя, связки, защищаемого материала, а также газовая среда. Покрытия способны формироваться в воздушной и инертной средах. Наряду с высокой жаростойкостью покрытия отличаются химической устойчивостью в контакте с жаропрочными сплавами, в газовых (водород, азот, перегретые пары серы и др.) и жидких (кипящие водные растворы НС1, НаЗО , HN0з) средах. Библ. — 9 назв., табл. — 4, рис. — 5.  [c.344]

На основе композиции с добавкой оксида алюминия получено жаростойкое покрытие (обмазка) Р-5 д.ля заш,иты графита от окисления в воздушной атмосфере до 1400 °С. На рис. 2 приведена микроструктура этого покрытия. Видно, что покрытие по структуре гетерогенно. В стекломатрице распределены кристаллические частицы и поры. В процессе термообработки от 20 до 1400 °С в покрытии протекают сложные процессы физико-химического взаимодействия, приводя1Цие при повышенных температурах к образованию легкоплавкого стеклорасплава, тугоплавкость которого с повышением температуры самопроизвольно повышается за счет растворения в нем тугоплавких оксидов. В покрытии образуются новые кристаллические  [c.109]

Горбатова Г. Н., Сазонова М. В. Условия образования и некоторые свойства покрытий для борпдов тугоплавких металлов. — В кн. Жаростойкие покрытия для защиты конструкционных материалов. Л., 1977, с. 106—111.  [c.110]

Отсюда следует, что повышение до.лговечностп износостойких покрытий при высоких температурах требует изыскания твердой фазы, которая, не уступая карбидам по твердости и жаростойкости, была бы более тугоплавкой и менее интенсивно взаимодействовала со связкой.  [c.154]

Покрытия из дисилицидов молибдена и вольфрама, чистые или легированные, являются одним из наиболее эффективных средств защиты тугоплавких металлов от высокотемпературного окисления. Исследование жаростойкости и кинетики окисления такого типа покрытий проводилось главным образом на воздухе [1]. Практический и научный интерес представляет проблема окисления сили-цидных покрытий при низких давлениях кислорода. В данной работе проведено изучение кинетики окисления покрытий силицидного типа на молибденовом сплаве ЦМВ-30 (состав, мас.% 30W, 0.1Т1, 0.01С, остальное Мо) [2].  [c.198]

В группе методик, объединяющей способы определения защитных свойств покрытий, представлены разновидности испытаний покрытий на жаростойкость. В работах А. А. Аппена, Г. В. Самсонова и др. обобщены данные о физико-технических свойствах тугоплавких покрытий, анализируются пути обеспечения их стабильности во время эксплуатации. Вместе с тем главная задача прогнозирования срока службы изделий с покрытиями в реальных условиях воздействия высоких температур еще далеко не решена.  [c.19]


Во многих случаях попытки улучшения жаростойкости материалов металлургическим путем не дали положительных эффектов. Результаты, достигнутые в последние годы в этол1 направлении, позволяют считать, что применение загцитных жаростойких покрытий для ответственных конструкций, работающих при температурах выше 800°С,— наиболее реальный и перспективный путь повышения конструктивной прочности. Защитные покрытия могут формироваться из различных ншростойких материалов тугоплавких металлов и сплавов, керамико-металлических соединений, керамик (тугоплавких оксидов, боридов, карбидов).  [c.125]

Церий обладает значительной способностью стабилизировать цементит. В белом чугуне отношение содержания церия в феррите и карбидах составляет 10 1. При его содержании менее 0,02% наблюдается увеличение размеров зерен, а при повышении концент-раппи до 0,06% происходит заметное измельчение зерна структуры. Тормозя распад вторичного и эвтектоидного цементита и содействуя образованию компактного углерода отжига в процессе термообработки, церий увеличивает стойкость белого чугуна при высоких температурах, резко снижая содержание серы, что само по себе улучшает жаростойкость чугуна. К тому же церий хорошо дегазирует металл, образуя тугоплавкие окислы, которые в случае образования сплошных плотных пленок могут обладать защитными свойствами.  [c.72]


Смотреть страницы где упоминается термин 218, 219 жаростойкие тугоплавкие : [c.492]    [c.116]    [c.118]    [c.277]    [c.313]    [c.246]    [c.262]    [c.6]    [c.7]    [c.117]    [c.139]   
Цветное литье Справочник (1989) -- [ c.193 ]



ПОИСК



Жаростойкость



© 2025 Mash-xxl.info Реклама на сайте