Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

168 - свойства и назначение с другими материалами 168 - Свойства

Выбор материала. При выборе материала учитывается соответствие его свойств взаимосвязанным техническим, эксплуатационным, технологическим и экономическим требованиям. Основные критерии при выборе материала а) функциональное назначение детали, условия ее эксплуатации, соответствие свойств материала общим требованиям к элементам приборов и специфическим требованиям к проектируемой детали (высокая электропроводность, или наоборот, большая величина электрического сопротивления, постоянство величины сопротивления, упругих свойств и других при изменении температуры окружающей. среды, или наоборот, наибольшее изменение этих свойств при изменении температуры, апти-магнитность, жесткость, прочность, износостойкость и др.) б) соответствие свойств материала требованиям надежности в) соответствие технологических свойств материала, намечаемым (в зависимости от программы выпуска) способам изготовления детали (штампуемость, литейные свойства обрабатываемость на станках и т. д.) г) стоимость и дефицитность материала.  [c.21]


По чертежу детали выясняют форму и размеры всех ее элементов, назначенный конструктором материал, допустимую шероховатость поверхностей, показатели свойств материалов, покрытия, предельные отклонения размеров, формы и расположения поверхностей, ограничивающих деталь, и другие данные.  [c.3]

Технологический процесс изготовления штампованных заготовок и готовых деталей холодной объемной Штамповкой состоит из разделительных, формоизменяющих и других операций (термической обработки, химической, электрохимической и механической обработки поверхности, гибки и пр.). В зависимости от физикомеханических свойств и штампуемости материала заготовки, формы, размеров, назначения и объема выпуска деталей, типа и параметров применяемых прессов и штампов одни операции могут повторяться несколько раз, а другие, кроме формоизменяющих, — отсутствовать. Формоизменение осуществляется за Одну или несколько операций, в каждой из которых могут быть использованы как простые, так и комбинированные процессы.  [c.19]

Выбор того или другого материала зависит от назначения упругого элемента. При этом во вни.мание принимается не только прочность и упругость материала, но и его другие свойства, например электропроводность, магнитность, выносливость и т. д.  [c.353]

Такое построение справочника дает возможность путем сравнений механических свойств и других характеристик сталей рекомендуемой группы наиболее правильно выбрать материал требуемого качества. Для удобства пользования Справочником вначале, в табличной форме, даются по всем сталям и сплавам сведения о их назначении, затем следуют данные о физических, механических и технологических свойствах, цены и виды поставляемого полуфабриката.  [c.3]

Свариваемость металлов и сплавов. Под свариваемостью понимают способность материалов образовывать соединения, механические и другие эксплуатационные свойства которых находятся на уровне основного материала. Свариваемость может быть оценена конкретными количественными характеристиками. В зависимости от назначения и условий эксплуатации конструк-  [c.55]

Материал в- кгс/мм Плот- ность, г/см Другие свойства Назначение  [c.897]

При формовании заготовками из порошков определенного химического состава прессованием придают форму и размеры готовых деталей, после чего их направляют на спекание. При спекании непрочные прессованные заготовки превращаются в прочное спеченное тело со свойствами, приближающимися к свойствам беспористого компактного материала. Температура спекания деталей из конструкционных материалов на основе железа с добавками графита, никеля и других компонентов составляет 1100—1200 °С. Температура спекания изделий антифрикционного назначения на основе железа составляет 1000— 1050 °С, на основе бронзы — 850—950 °С. Спекание проводят в течение 0,5—1,5 ч в нагревательных печах, как правило, в за-  [c.248]

Контроль качества сварного соединения с помощью образцов-свидетелей. Для контроля качества сварных соединений применяют периодические испытания контрольных технологических образцов-свидетелей. Эти образцы удобны для проведения испытаний и измерений, и их легко изготовить. При обеспечении одинаковых условий сварки образцов и сварных изделий (однородность материала, подготовка свариваемых поверхностей, режим сварки и др.) можно по измеренным характеристикам сварного соединения образцов судить о качестве сварного соединения готовых изделий. Качество сварки на контрольных образцах оценивают по результатам испытаний и измерений, проводимых соответственно требованиям, предъявляемым к сварным соединениям. Кроме механической прочности, нередко предъявляются требования особых свойств. Например, сохранение электрических свойств одного из металлов без изменения их в зоне сварного соединения или сохранение оптических свойств в сварной зоне и геометрических размеров изделий, получаемых способом ДС кварцевых элементов, и т. д. В ряде случаев к сварным соединениям не предъявляются повышенные требования по прочности. Например, для элементов электродов электролизеров, изготовленных способом ДС из пористых и сетчатых материалов, основной является электрохимическая характеристика, полученная при различных плотностях тока. Имея указанные выше данные, необходимо провести статистическую обработку результатов испытаний и измерений, используя математические методы. Основной задачей такой обработки является оценка среднего значения характеристики того или иного свойства и ошибки в определении этого среднего, а также выбор минимально необходимого количества образцов (или замеров) для оценки среднего с требуемой точностью. Эта задача является стандартной для любых измерений и подробно рассматривается во многих руководствах [8]. Следует иметь в виду, что, несмотря на одинаковые условия сварки образцов и изделий, качество соединения может быть различным по следующим причинам. При сварке деталей, имеющих значительно большие размеры по сравнению с контрольными образцами, возможны неравномерность нагрева вдоль поверхности соединения, а также неравномерность передачи давления. Образцы и изделия вообще имеют различную кривизну свариваемых поверхностей, что не обеспечивает идентичности условий формирования соединения. В ряде случаев, особенно для соединений ответственного назначения, перед разрушающими испытаниями образцов и изделий целесообразно, если это возможно, проводить неразрушающий контроль качества сварного соединения, а также другие возможные исследования для установления корреляции между различными измеряемыми характеристиками. Основные методы определения механических свойств сварного соединения и его отдельных зон устанавливает ГОСТ 6996—66. Имеются стандарты для испытаний на растяжение, ударную вязкость, коррозионную стойкость и т. д. [18]. В этих ГОСТах даны определения характеристик, оцениваемых в результате испытания, типовые формы и размеры образцов, основные требования к испытательному оборудованию, методика проведения испытания и подсчета результатов.  [c.249]


Механические испытания материалов не следует путать с механическими испытаниями деталей, узлов или конструкций в целом. Если при испытании материалов определяются только свойства материала, то при испытании конструкции определяется не прочность материалов, а прочность конструкций. При механических испытаниях конструкции, с одной стороны, проверяется точность проведенных расчетов, а с другой — правильность назначенных технологических процессов изготовления и сборки.  [c.273]

Изучение физических закономерностей изменения структурно-фазо-вого и напряженно-деформированного состояния поверхностного слоя деталей при трении, накопление и обобщение результатов экспериментальных исследований и опыта эксплуатации трибосистем различного вида и назначения позволили определить физические основы структурной модификации материалов трибосистем. В главе 6 показано, что в качестве физической основы структурной модификации выступают закономерности фазовых переходов, определяемые уровнем потенциала Гиббса или свободной энергией системы. А переход из одного фазового состояния в другое сопровождается существенным изменением внутреннего строения и физических свойств системы. Фазы выступают в качестве элементов структуры любого материала (сплава,  [c.268]

Геометрическая форма и размеры каждой детали механизма определяются ее назначением и взаимодействием с другими деталями взаимным расположением, формой и размерами сопряженных деталей направлением, величиной и местами приложения действующих на деталь сил и моментов видом деформаций, которые испытывает деталь условиями эксплуатации механизма свойствами материала технологией изготовления, сборки и ремонта и другими факторами.  [c.150]

При выборе материала пружины необходимо учитывать устойчивость во времени упругих свойств материала готовой пружины (после термообработки), прочность и сопротивление ударным нагрузкам, а также электропроводность, коэффициент расширения, стойкость против коррозии и другие свойства, которые определяются назначением и условиями работы пружины.  [c.336]

Согласно ГОСТ 15467—79 качество продукции —это совокупность свойств продукции, обусловливающих ее пригодность удовлетворять определенные потребности в соответствии с ее назначением . Высококачественный объект должен отличаться постоянством химического состава, микро- и макроструктуры, электрических и магнитных характеристик материала, неизменными геометрическими размерами, повышенными механическими, антикоррозионными и другими свойствами.  [c.8]

С одной стороны, и формой и назначением элемента — с другой. Заметим, что применение методов сопротивления материалов для расчета относительно длинных балок дозволяет получить вполне удовлетворительные результаты, а расчет очень коротких слоистых балок, используемых для определения свойств материала, требует применения общих методов теории упругости. К сожалению, строгих критериев, позволяющих выбрать тот или иной метод расчета, в настоящее время не существует. Дальнейшие исследования в этом направлении весьма полезны, они позволят инженеру обоснованно выбирать соответствующий метод расчета, что приведет к снижению затрат на проектирование конструкции и к повышению ее надежности.  [c.134]

К группе изотропных композиционных материалов относят материалы, для армирования которых используют наполнитель в виде рубленых коротких волокон, соизмеримых с диаметром, сплошных и полых сфер и микросфер, порошков и других мелкодисперсных компонентов. В таких материалах армирующий наполнитель хаотически перемешан со связующей матрицей. Напряженно-деформированное состояние такого материала аналогично однородному изотропному материалу. В зависимости от назначения изделия в качестве наполнителя изотропных композиционных материалов используют синтетические, минеральные и металлические компоненты. В качестве связующей матрицы применяют термореактивные полимеры и термопластичные (эпоксидные, полиэфирные, полиамидные, полистирольные, поливинилхлоридные, фенольные и другие смолы и их комбинации), а также металлы, обладающие высокими адгезионными свойствами к наполнителю.  [c.5]

История развития синтетических конструкционных материалов в нашей стране начинается в годы первой пятилетки с использования фенопластов в качестве поделочного материала в машиностроении. В 1930—1933 гг. были проведены экспериментальные работы по использованию текстолита для изготовления тяжелонагруженных подшипников скольжения со смазкой водой взамен бронзы и баббита. С 1935 г. в значительной части прокатных станов бронзовые вкладыши подшипников были заменены текстолитовыми. Многолетний опыт эксплуатации указанных вкладышей подтвердил их высокую износостойкость, низкий коэффициент трения и другие техникоэкономические преимуш ества. В дальнейшем вкладыши из текстолита в некоторых прокатных станах были заменены древесно-слоистыми пластиками, которые по физико-механическим свойствам не уступают текстолиту, а по стоимости значительно дешевле его. Кроме того, текстолит применялся в эти годы в качестве поделочного конструкционного материала. Значительная часть фенопластов использовалась для выпуска электроустановочных изделий (патроны, штепселя, выключатели и др.). Органическое стекло нашло широкое применение для остекления кабин самолетов. В годы войны пластмассы использовались для удовлетворения нужд фронта (минные и артиллерийские взрыватели, детали авиационного, радио- и электротехнического назначения и др.).  [c.214]


Основные физико-механические свойства конструкционных пластмасс машино- и приборостроительного назначения, сведения об их переработке и применении приведены в табл. 290—296. В табл. 290 указаны свойства перспективного для машиностроения материала — антегмита. Номенклатура свойств других распространенных пластмасс (табл. 291—296) позволяет предварительно выбрать материал, а также получить ориентировочные данные для расчета пластмассовых конструкций. Следует учитывать изменения свойств пластмасс в результате старения и сопротивления внешним нагрузкам.  [c.686]

Материал марки П68-Т20 — это полиамидная смола 68 с добавкой 20% талька, выпускается в гранулированном виде, как и другие термопласты. Материал является по своим свойствам антифрикционным и электроизоляционным, обладает, в отличие от ненаполненной полиамидной смолы, большей размерной стабильностью, особенно при повышенных температурах. Рекомендуется для изготовления деталей, работаюш,их при условиях трения — вкладышей подшипников, трибок, разъемов. Литьевой полиметилметакрилат ЛП-Т более теплостоек и устойчив к воздействию жидких сред, чем обычный полиметилметакрилат. Поэтому детали электротехнического и оптического назначения из него более надежны в работе.  [c.142]

Текстолит. Конструкционный текстолит (ГОСТ 5—72) представляет собой слоистый пластический материал, полученный путем прессования нескольких слоев хлопчатобумажной ткани, пропитанной термореактивными смолами. Выпускается текстолит конструкционный марок ПТК и ПТ (1-го и 2-го сортов), предназначенных для изготовления шестерен, втулок, подшипников скольжения, роликов, прокладок, панелей и других изделий технического назначения и марок ПТМ-1 и ПТМ-2, предназначенных для изготовления вкладышей подшипников прокатных станов и других изделий. Физико-механические свойства и предусмотренные стандартом толщины листов текстолита марок ПТК и ПТ показаны соответственно в табл. П-44 и II-45.  [c.82]

Итак, конечной целью комплексной и опережающей стандартизации является обеспечение и поддержание оптимального уровня качества машин, приборов и других изделий во времени путем одновременного проведения работ по установлению и стандартизации взаимоувязанных ступенчатых требований к качеству материала, деталей, узлов, покупных и кооперируемых изделий, элементов процессов проектирования, производства и эксплуатации изделия, исходя из требований к его качеству. Дальнейшее развитие теоретических и методологических основ опережающей и комплексной стандартизации будет способствовать более широкому внедрению их в практику стандартизации. Получили развитие научно-методические основы разработки государственных стандартов с перспективными требованиями в составе научно-исследовательских работ по определению перспектив развития групп однородной продукции. Под группой однородной продукции понимается совокупность продукции, характеризующаяся общим целевым (функциональным) назначением, обладающая общими основными свойствами.  [c.483]

Назначение. Сверла, развертки, метчики, плашки, гребенки, фрезы, штемпели, машинные штампы, клейма для холодных работ и другой инструмент для ручной работы. Ответственные детали, материал которых должен обладать повышенной износостойкостью, усталостной прочностью при изгибе, кручении, контактном нагружении, а также упругими свойствами.  [c.420]

Следовательно, свариваемость зависит, с одной стороны, от материала, технологии сварки, конструктивного оформления соединений, а с другой — от требуемых эксплуатационных свойств сварной конструкции. Если эти требования удовлетворяются, то свариваемость материалов считается достаточной. Если не обеспечивается минимальный уровень хотя бы одного из эксплуатационных свойств сварного соединения, то она считается недостаточной. При этом свариваемость одного и того же материала может быть оценена как достаточная или недостаточная в зависимости от назначения изделия.  [c.40]

Применение. Грамотный выбор марки стали для конкретного инструмента в зависимости от условий его работы и обрабатываемого материала дает возможность максимально использовать ресурсы свойств выбранной стали и, как следствие, рационально расходовать легирующие материалы, а также определять необходимость тех или иных покрытий, наплавки и других способов поверхностного упрочения. В табл. 6.9. представлены рекомендуемые области применения наиболее распространенных марок быстрорежущих сталей в зависимости от типов обрабатываемых материалов и видов обработки. Такой подход к выбору инструментальных сталей любого назначения способствует повышению как производительности, так и экономичности производства.  [c.389]

Все строительные объекты общественного назначения и промышленные здания содержат конструкционные элементы неорганического происхождения, в том числе выполненные из кирпича и бетона, причем последний стал основным материалом при строительстве большинства объектов. Изделия, выполненные из горных пород, также применяются при строительстве зданий, печей, емкостей и промышленной аппаратуры. Изделия из горных пород имеют достаточно высокую химическую стойкость, благодаря чему они не нуждаются в специальной защите, если только материал, который соединяет плитки, кирпичи и другие элементы, обладает антикоррозионными свойствами. Однако бетоны, являющиеся основным материалом для строительства, имеют неодинаковую стойкость (это определяется технологией производства бетона и химической стойкостью его компонентов — цемента и щебня). Поэтому придание бетону стойкости и защита его от коррозии представляют очень важную задачу.  [c.278]

Пластические массы. Пластмассы обладают многими ценными свойствами (диэлектрической прочностью, антикоррозионной стойкостью, прозрачностью, малой плотностью, быстротой изготовления и др.), выгодно отличающими их от черных, цветных металлов и других известных природных материалов. Применение пластмасс эффективно только тогда, когда выбор их для того или другого назначения производится с учетом их свойств. Практически при выборе полимерных материалов следует руководствоваться потребительскими рядами пластмасс, составленными по таким главнейшим их свойствам, как ударная прочность, износостойкость, фрикционность, антифрикционность, тепло-жаростойкость и химическая стойкость и др. Такой ряд, например, конструкционных, ударопрочных пластмасс содержит несколько наименований и марок, обладающих важными свойствами для выбора материала (табл. 13.1)  [c.241]

Керамика кристаллическую основу которой в обоЖ женном виде представляют диоксид титана TiOj или ти-танаты щелочноземельных металлов, а также некоторые другие соединения с подобными им свойствами, объединена в один класс технической керамики по той причине, что все эти соединения обладают повышенным, высоким или даже сверхвысоким значением диэлектрической проницаемости по сравнению со всеми остальными керамическими материалами. Это отличительное свойство предопределяет их назначение в качестве материала для изготовления керамических конденсаторов и пьезоэлементов. Среди этого класса можно выделить группу материалов, обладающих сегнетоэлектрическими свойствами и применяемых для производства нелинейных конденсаторов — варикондов и пьезокерамических элементов. Особенности технологии изготовления этих материалов и их своеобразные свойства позволяют объединить их в отдельные группы.  [c.185]


Смазочно-охлаждающие технологические среды (СОТС) являются обязательным элементом большинства технологических процессов обработки материалов резанием. Точение, фрезерование, сверление, тл о-вание и другие процессы обработки резанием сталей, чугунов, цветных металлов и сплавов, неметаллических конструкционных материалов характеризуются большими статическими и динамическими нагрузками, температурами, истирающим воздействием обрабатываемого материала на режущий инструмент. В этих условиях основное назначение СОТС -уменьшить температуру, силу резания и износ режущего инструмента, обеспечить требуемое качество обработанной поверхности. Помимо этого СОТС должны отвечать гигиеническим и экологическим требованиям, обладать комплексом антикоррозионных, моющих, антимикробных и других эксплуатационннх свойств.  [c.1]

Ультразвуковыми называют большую группу процессов и операций разнообразного назначения, осуществляемых с механическими упругими колебаниями частотой выше 16—18 кГц. В одних процессах ультразвуковые колебания используют для передачи в зону обработки необходимого количества энергии (размерная ультразвуковая обработка твердых материалов), в других служат средством интенсификации химических и электрохимических процессов. Ультразвуковая размерная обработка — это направленное разрушение твердых и хрупких материалов при помощи мельчайших зерен абразивного порошка, вводимых в виде суспензии в зазор между торцом инструмента и заготовкой, колеблющихся с ультразвуковой частотой. Под ударами зерен абразива скалываются мелкие частицы материала с поверхности заготовки. Обрабатываемая площадь и наибольшая глубина обработки зависят от сечения и свойств магни-тострикционного материала, из которого изготовлен двигатель-преобразователь.  [c.295]

Технические требования к шайбам. Черные и яистые шайбы общего назначения изготовляются в соответствии с ГОСТ 6960-54 из стали следующих марок Ст. 0 Ст. 1 Ст. 2 Ст. 3 Ст. 4 08 10 15 20 25 30 35 40 и А12. Марка стали Заказывается в заказе. При отсутствии такого указания шайбы изготовляются по усмотрению завода-изготовителя из стали любой марки, указанной выше. Шайбы из цветных металлов и сплавов могут изготовляться только в тех случаях, когда материал шайб должен обладать антимагнитными свойствами или когда шайбы являются токопроводящими деталями, а также в других отдельных технически обоснованных сл чаях. По требованию потребителя шайбы могут поставляться с противокоррозионным и декоративным покрытием, а также термически обработанными. Требования к части покрытия и механических свойств таких шайб должны быть установлены дополнительными техническими условиями, согласованными между сторонами. Шайбы должны быть плоскими и не должны иметь заусенцев и острых кромок.  [c.226]

Легкие сплавы — конструкционные сплавы с плотностью р 4500 кгЛм на основе алюминия, титана, магния и присадок других элементов. Благодаря высокой удельной прочности (отношение предела прочности к плотности материала) и другим положительным свойствам их применяют в химической, пищевой и других отраслях машиностроения, где снижение массы особенно необходимо (например, для корпусных и других деталей транспортных машин и летательных аппаратов). Для изготовления деталей общего назначения широко используют силумины (ГОСТ 4784—74 ), имеющие высокие литейные свойства, и дюралюмины (марки Д16), обладающие высокой удельной прочностью. Литейные магниевые сплавы (ГОСТ 2581—78) применяют для изготовления деталей методом литья.  [c.33]

Для лучшей адгезии тиоколовые герметики наносят непосредственно не на металл, а на грунт (ВТУР, клеи 88-Н, К-50 и др.). Вулканизация тиоколовых герметиков протекает при комнатной температуре в среднем за 24 ч. Кроме прямого назначения (герметизирующий материал) тиоколовые составы могут быть использованы в качестве покрытий, защищающих металлы от влаги и паров воды, бензина, растворов минеральных кислот и их солей, от атмосферных и других воздействий. В сочетании с эпоксидными смолами адгезия тиоколовых герметиков и некоторые их свойства улучшаются.  [c.113]

В обувной пром-сти гранитолем называется материал, к-рый также представляет собой комбинацию из ткани и нитроцеллюлозы. Но назначение, характер и свойства его совершенно другие. В то время как дерматин, представляющий собой суррогат кожи, применяется в качестве материала для обивки мебели, для изготовления раяцвв и т. п., обувной гранитоль служит для придания стойкости нек-рым частям обуви, а именно носку и заднику. От этих частей обуви требуется особая стойкость, т. к. от нее зависит сохранение формы ботинка и защита ноги от внешних механич. воздействий.  [c.184]

БУМАЖНАЯ ТАРА. Около 40% мировой продукции бумаги и картона употребляется для завертывания, изолирования от внешних воздействий и упаковки производимых и потребляемых товаров. В зависимости от назначения эта бумага как упаковочный материал должна обладать крайне разнообразными физич. и химич. свойствами. В одних случаях требуется полное отсутствие окисляющих, восстанавливаюн их и т. п. веществ, могущих действовать химич. образом на упаковываемый в данную бумагу товар. Таковы напр, бумаги для завертывания фотографич. пластинок, золотых, серебряных и других полированных металлич. предметов, для завертывания канители, парчи и пр. Или, наоборот, бумага д. б. выработана из материала, не изменяющегося от соприкосновения о товарами или выделяющимися из него летучими веществами так напр., бумага для упаковки табака, если желательно сохранить его первоначальный вид, не должна содержать древесной массы. В других случаях требуется предохранить упаковываемый товар от действия воздуха и от соприкосновения с наружной деревянной или металлической тарой. Примером такой тары может служить пергамент, получаемый обработкой тряпичной бумаги серной к-той (см. Пергамент растительный), или целлюлозный пергамент (подпергамент, пергамин), получаемый продолжительным размолом сульфитной целлюлозы. Оба эти вида пергаме1гга пе пропускают (непроницаемы) воздух, воду, жиры и масла и потому идут исключительно для упаковки масел и жиров как в розничной, так и в оптовой и экспортной торговле. Буковые бочки, служащие для укупорки масла, выстилают внутри пергаментом, предохраняющим масло от соприкосновения как с воздухом, окисляющим масло при долгом хранении, так и с древесиной бука, придающей маслу красную окраску и неприятный вкус. Образуя непроницаемую для воздуха перепонку, пергамент предохраняет масла и жиры также от заноса заражающих их бактерий. В других случаях требуются определенные физич. свойства, предохраняющие упакованный материал от посторонних механич. воздействий. Наиболее известным образцом такой тары может служить гофрированный, преимущественно соломенный, картон, служащий для упаковки электрич. лампочек. За границей такие гофрированные тонкие картоны широко распространены для упаковки, причем из них делают коробки, вмещающие 5—10 кг товара вместо коробок часто применяют листы, в к-рые и завертывают упаковываемые предметы (книги, журналы и пр.). Широко распространена упаковка в гладкие картонные листы или коробки (картонажи], причем картон вырабатывается из слабого материала (соломенная бумажная масса, масса из бумажной рвани), но для упрочнения часто обклеивается листами крепкой бумаги. В нек-рых случаях употребляют металлизированную бумагу или картон, покрытые галь-  [c.595]

Выбирая материал, учитывают в основном следующие факторы соответствие boii tb материала главному критерию работоспособности (прочность, износостойкость и др.) требования к массе и габаритам детали и машины в целом другие требования, связанные с назначением детали и условиями ее эксплуатации (противокоррозионная стойкость, фрикционные свойства, электроизоляционные свойства и т. д.) соответствие технологических свойств материала конструктивной форме и намечаемому способу обработки детали (штампуемость, свариваемость, литейные свойства, обрабатываемость резанием и пр.) стоимость и дефицитность материала.  [c.9]

В зависимости от назначения ультразвуковые приборы, как и другие приборы неразрушающего контроля, подразделяются на дефектоскопы для поиска и обнаружения дефектов, толщиномеры для измерения толщины стенок при одностороннем доступе к изделию или измерения толщины покрытий и слоев, анализаторы физико-механических свойств материала, служащие для измер)сния величины зерна, графитовых включений в чугунах, напряженного состояния объекта, упругих харс1ктеристик материала и остальных свойств, которые зависят от скорости прохождения ультразвука.  [c.179]

Затем определяют минимально допустимую толщину стенки, выбираемую в зависимости от материала отливки, его механических и технологических свойств, от способа литья, конфигурации, размеров и назначения отливки. Необходимо стремиться к минимальной толщине стенок.Если толщина стенок завышена,это может привести к появлению усадочных рыхлот, пористости и других дефектов. В конечном итоге по этой причине прочность стенок снижается и увеличивается расход металла. Требуемую прочность и жесткость стенок отливки следует обеспечивать за счет использования ребер жесткости. Если толщина стенок занижена, то отливку трудно получить технологически (возможно незаполнение формы, неслитины, трещины и т. п.). Кроме того, в отливках сложной конфигурации с тонкими стенками за счет усадочных напряжений могут появиться коробления и трещины.  [c.56]


Инжонерио-физические модели рассматривают материал как совокупность зерен с различной ориентированной кристаллической структурой (рис. 1.6, б). Для описания свойств реальных тол учитывается случайный характер размеров зорен и нанравлеиий кристаллографических плоскостей. Подобные модели позволяют объяснить ряд важных особенносте поведения материала, но еще но могут служить основой практической оценки прочности материалов. Основное назначение инженерно-физических моделей — выработать научные основы статистического описания механических и других свойств материала.  [c.13]

Наличие волокон с высокой жесткостью позволяет варьировать в самом широком диапазоне зависимость уд ль-ной прочности композиционных материалов от их удельной жесткости. Это обусловливает существенные преимущества композиционных материалов перед металлами, где удельная жесткость примерно постоянная при некотором изменении удельной прочности [15]. Управление удельной жесткостью и прочностью, а также другими физико-механическими характеристиками в плоскости армирования осуществляется нзд1енением укладки волокон или одноосных тканей различного плетения как в плоскости, так и по толщине пластины или изделия [2, 14]. При этом характеристики композиционных материалов перпендикулярно плоскости армирования практически не изменяются [25]. Варьирование укладки волокон приводит не только к изменению степени анизотропии свойств, при незначительном изменении сопротивления межслойному сдвигу и поперечному отрыву [20, 69]. Наличие переменной укладки по толщине приводит к существенному увеличению неоднородности структуры композиционного материала, что необходимо учитывать при расчете конструкций из таких материалов [2, 104]. Выбор закона укладки в плоскости и по толщине пакета подчиняется назначению конструкции. Таким образом, использование высокомодуль-пых волокон при традиционных схемах армирования, когда толщина изделия создается набором плоских армирующих элементов — ирепрегов или слоев ткани, не устраняет указанных выше отрицательных особенностей композиционных материалов.  [c.8]

Конструирование машин в силу исторически сложившихся представлений об их природе все еш,е страдает иногда известной ограниченностью в смысле недостаточности теоретических обобш,ений частных конструктивных решений, в результате чего для каждого случая конструируют машины заново. Вследствие этого конструктивная разработка новой машины представляет своеобразную импровизацию , тогда как при использовании уже суще-ствуюш,их конструктивных решений можно было бы значительно сузить их многообразие при решении тождественных задач. Это является результатом традиционных представлений, в силу которых все составляющие машину детали и узлы рассматриваются как совершенно специфические, присущие только данной конструкции и предопределяющие особенности устройства и назначения именно этой машины. Конструирование машин было основано на частных решениях, в ряде случаев принципиально тождественных, но конструктивно изолированных друг от друга. Характерно, что примерно до начала XX в. даже болты и гайки рассматривались как элементы, специфические по своей конструкции для каждой отдельно взятой машины. Именно болт оказался первой деталью, которая приобрела в известном смысле универсальные свойства при конструировании машин его стали применять прежде всех других деталей в машинах, самых разнообразных по своему назначению и устройству при тождественности характера передаваемых усилий и их величин. В этих условиях болт потерял свои прежние черты индивидуально приспособленной детали конструктивные формы, размеры и качество материала болта оказалось возможным брать одинаковыми — унифицированными. В дальнейшем этот процесс утери признаков индивидуальности распространился на ряд других деталей, которые постепенно в ряде стран были регламентированы в отношении их важнейших технических характеристик — формы, размеров и пр.  [c.7]

Прокладочный материал выбирают в зависимости от условий работы, величины давления, температурного режима и t. д. Для уплотнения соединений общего назначения, например крышек маслосодержащих полостей, чаще всего применяют прокладочную бумагу толщиной 0,05-0,15 мм, кабельную бумагу (бумагу, пропитанную бакелитом или другими синтетическими смолами), прокладочный картон толщиной 0,5-1,5 мм, прессшпан и т. д. Наилучшими свойствами обладают прокладки из синтетических материалов типа полихлорвинила и политрифторэтилепа.  [c.135]

Технологические функции кладки определяются назначением печи. В некоторых случаях кладка не принимает участия в тех-нол огичеоком процессе (например, сушильные печи), в других это участие (химическое взаимодействие шлаков и материала кладки), хотя и имеет место, но нежелательно (нагревательные печи) в третьих оно неизбежно по условиям процесса (мартеновские печи). Степень участия кладки в технолопическом процессе IB основном определяется температурным уровнем последнего и поэтому условия службы кладки печей различного технологического назначения различны. Присутствие жидкой фазы увеличивает участие кладки а технологическом процессе, так как жидкая фаза (шлак, металл) тесно контактирует с кладкой. Чем агрессивнее свойства жидкой фазы, тем больше участие кладки в технологическом процессе, что учитывается при шихтовке процесса. Газовая фаза также может взаимодействовать с кладкой, ускоряя разрушение последней однако, естественно, активность воздействия газовой фазы на кл-адку значительно меньше.  [c.400]

По назначению машина может быть определена как устройство, выполняющее механические движения для преобразования энергии, материалов и информации. В зависимости от этого различают машины трех видов энергетические, рабочие и информационные. Энергетические машины (машины-двигатели) предназначены для преобразования любого вида энергии в механическую (электродвигатели, двигатели внутреннего сгорания, турбины, паровые машины, электрогенераторы и т. п.). Рабочие машины, в свою очередь, подразделяют на технологические и транспортные. Технологические машины (металлообрабатывающие станки, прокатные станы, ткацкие станки, типографские, швейные, упаковочные и другие машины) предназначены для преобразования материала (твердого, жидкого, газообразного), г. е. изменения его формы, свойств, состояния. Транспортные машины (теплоходы и электровозы, автомобили и самолеты, конвейеры и экскалаторы, подъемные краны и т. п.) предназначены для изменения положения и направления перемещения предметов и материалов. Информационные машины (механические интеграторы, счетные полуавтоматы и автоматы и др.) предназначены для преобразования информации.  [c.8]

Другое назначение динамических испытаний — определение механических свойств металлов и сплавов при повышенной скорости деформирова-II и я. Это часто. необходимо для материала конструкций, испытывающих в эксплуатации нагружение с большой скоростью. Вероятно, наиболее целесообразно для этих целей испытание на высокоскоростных машинах с постоянной в процессе испытания скоростью относительного перемещения захватов, причем не-только образцов с надрезом на изгиб, но н образцов другой формы при других способах нагружения.  [c.209]

ГОСТ 5632—72 является основным при назначении материала и входит составной частью в другие стандарты следующего уровня применительно к конкретным видам металлопродукции ГОСТ 5949—75 Сталь сортовая и калиброванная, жаростойкая и жаропрочная , ГОСТ 5582—75 Сталь тонколистовая коррозионностойкая, жаростойкая и жаропрочная , ГОСТ 7350—77 Сталь толстолистовая коррозионностойкая, жаростойкая и жаропрочная , ГОСТ 18143—72 Проволока из высоколегированной коррозионностойкой и жаростойкой стали , ГОСТ 9940—81 Трубы бесшовные горячедеформированные из коррозионностойкой стали , ГОСТ 9941—81 Трубы бесшовные холодно- и теплодеформированные из коррозионностойкой стали , ГОСТ 11068—81 Трубы из коррозионностойкой стали электросварные , ГОСТ 4986—79 Лента холоднокатаная из коррозионностойкой и жаростойкой стали , ГОСТ 2176—-77 Отливки из высоколегированной стали со специальными свойствами .  [c.9]


Смотреть страницы где упоминается термин 168 - свойства и назначение с другими материалами 168 - Свойства : [c.662]    [c.86]    [c.12]   
Справочник конструктора-машиностроителя Том3 изд.8 (2001) -- [ c.0 ]



ПОИСК



168 - свойства и назначение

168 - свойства и назначение и назначение

Другие свойства

Свойства материалов



© 2025 Mash-xxl.info Реклама на сайте