ПОИСК Статьи Чертежи Таблицы Высокая прочность и композиционные материалы из "Строение и свойства металлических сплавов " При очень тщательном устранении поврежденного поверхностного слоя удается, как указывалось ранее, достигнуть прочности хрупких материалов (стекла, сапфира, кремния), близкой к теоретической. Тем не менее вряд ли хрупкие высокопрочные материалы найдут широкое применение в практике, так как всегда есть опасность потери прочности из-за случайного повреждения поверхности. Однако если из хрупкого материала, например стекла или кварца, получить нити и связать их пластичной матрицей, то можно одновременно обеспечить высокую прочность и высокое сопротивление хрупкому разрушению. В данном случае задача решается благодаря геометрии волокон в тонких нитях трещины либо очень короткие, если они расположены поперек волокон, либо безопасны, если ориентированы вдоль волокон если одно или несколько волокон порвется, то нагрузка перераспределится на другие волокна и материал не разрушится. Таким образом, возможное решение противоречивой задачи хрупкость — пластичность — это композиционные материалы, состоящие из пластичной матрицы и высокопрочного наполнителя (принцип стеклопластиков). Поскольку в волокнах подвижные дислокации не нужны для создания высокого сопротивления распространению трещин, то целесообразно использовать волокна хрупких, высокопрочных материалов. В табл. 35—37 приведены данные о прочности некоторых нитевидных кристаллов — естественных, стеклянных, кварцевых волокон, а также прочность некоторых видов поликристаллической металлической проволоки при комнатной температуре. [c.351] Практически высокопрочные композиционные материалы могут быть получены как в результате армирования матрицы (металлической или неметаллической) непрерывными волокнами, так и дискретными нитевидными кристаллами. Первая реализуется технологически проще, вторая сулит более высокую прочность. [c.351] Протравленное силикатное стекло. . [c.352] Графитовые волокна RAE 5. [c.352] Вернуться к основной статье