ПОИСК Статьи Чертежи Таблицы Термическая водоподготовка из "Водоподготовка в энергетике " В питательную воду испарителей мгновенного вскипания могут добавляться мелкодисперсные примеси природного мела или строительного гипса. Последние играют роль затравки для осаждения примесей из воды при кипении ее в объеме. Образование вторичного пара в такого типа испарителях происходит при поступлении в объем воды, температура которой выше температуры насыщения, соответствующей давлению в этом объеме. Вторичный пар из объема, в котором происходит расширение воды с его образованием, подается в конденсатор (конденсатор испарителя), где конденсируется. Опытно-про-мышленная установка такого типа долгое время работала на Марый-ской ГРЭС (Туркмения) и показала высокую эффективность. В США испарительная установка мгновенного вскипания работает для подготовки добавочной воды в схеме блока мощностью 1125 МВт. [c.240] Испарители поверхностного типа могут быть одно- или многоступенчатыми. В многоступенчатых испарителях поверхностного типа конденсация вторичного пара предыдущего испарителя происходит на поверхности (в греющей секции) последующего испарителя, т.е. вторичный пар предыдущего испарителя является греющим для последующего. За счет этого увеличивается количество получаемого вторичного пара на единицу расхода греющего пара. [c.240] В многоступенчатых испарителях мгновенного вскипания неис-парившаяся в объеме первой ступени вода поступает в объем второй ступени и т.д. При этом давление в объемах расширения последовательно снижается. [c.240] Многоступенчатые испарительные установки с испарителями поверхностного типа нашли применение на ТЭЦ для отпуска пара промышленным потребителям. При этом в цикле ТЭЦ полностью сохраняется рабочее тело и восполняются внутренние потери пара и конденсата. [c.240] На АЭС испарительные установки могут применяться не только для подготовки добавочной воды, но и в системе спецводоочистки для очистки продувочной воды первого контура, радиоактивных вод бассейнов выдержки твэлов, сбросных вод, а также вод санпропускника. Во всех этих случаях в испарительных установках вода освобождается от растворенных в ней радиоактивных твердых веществ. На одноконтурных АЭС испарители используются для генерации пара, который применяется для уплотнения турбины и как рабочее тело эжекторных установок. [c.241] Для очистки радиоактивных промывочных вод, вод бассейнов выдержки и прочих активных сбросных вод применяют одноступенчатые испарительные установки. Для очистки продувочных вод первого контура используют обычно многоступенчатые испарительные установки. [c.241] В последние годы испарители начинают получать применение для очистки сточных вод тепловых электростанций, концентрируя имеющиеся в них примеси до состояния, при котором они могут быть использованы в народном хозяйстве. [c.241] Испаритель и конденсатор, в котором конденсируется полученный в испарителе пар, образуют испарительную установку. В испарительной установке происходит дистилляция исходной добавочной воды — переход ее в пар и последующая конденсация получаемого пара. Конденсат испаряемой воды является дистиллятом, свободным от солей жесткости, растворимых солей, щелочей, кремниевой кислоты и др. [c.241] Испарение добавочной воды происходит за счет тепла конденсирующегося греющего пара одного из отборов турбины. Конденсация получаемого в испарителе вторичного пара происходит за счет охлаждения его водой, а в конденсационных турбоустановках — конденсатом турбины. Включение испарительной установки в тепловую схему конденсационного блока показано на рис. 9.2. [c.241] ОСНОВНОГО конденсата турбины и возвращается с питательной водой в котел. Следовательно, испарительную установку, включенную по такой схеме, можно рассматривать как элемент регенеративной системы турбоустановки. Действительно, когда испаритель не включен в работу, подогрев основного конденсата турбины от энтальпии /г + j до энтальпии /г происходит в регенеративном подогревателе Я паром, поступающим по линии 1 из отбора турбины. Когда испаритель работает, подогрев основного конденсата ведется последовательно в конденсаторе испарителя КИ и подогревателе Я в том же диапазоне энтальпий. При этом общее количество отборного пара остается неизменным. Неизменной остается и тепловая экономичность турбоустановки. Такое включение испарительной установки в тепловую схему турбоустановки называют без потерь потенциала. В тепловой схеме конденсационной турбоустановки испарители и конденсаторы испарителей размещаются в системе регенеративного подогрева низкого давления, т.е. между подогревателями, установленными на линии подогрева основного конденсата до деаэратора. Для таких условий температурный перепад, который может быть использован в испарителе, не превышает разности температур насыщения пара, поступающего в смежные отборы. Обычно этот перепад не превышает 15—20 °С. При постоянном пропуске основного конденсата через конденсатор испарителя его конденсирующая способность будет определяться диапазоном подогрева основного конденсата, который тем больше, чем меньше температурный напор в испарителе. [c.242] При заданных параметрах греющего пара, т.е. при принятом месте включения испарительной установки в тепловую схему, известных расходе и энтальпии основного конденсата на входе в конденсатор испарителя совместное решение уравнений (9.1)—(9.4) позволяет рассчитать производительность установки и параметры вторичного пара. [c.243] при котором достигается равенство Q, соответствует тепловому балансу в испарительной установке. При этом производительность установки может быть найдена по уравнению (9.1). [c.244] Обычно при проектировании тепловой схемы турбоустановки предполагаемые потери пара и конденсата в цикле известны и необходимо правильно выбрать место включения испарительной установки и определить необходимые площади поверхностей нагрева испарителя и конденсатора испарителя. [c.244] Анализ тепловых схем конденсационных турбоустановок показывает, что во всех случаях необходимое количество добавочной воды может быть получено от испарительных установок (одной или двух), включенных в регенеративную систему низкого давления. Включение испарителей в тепловую схему блока К-200-130 показано на рис. 9.4. На блоке имеются две испарительные установки, одна из них подключена к пятому отбору, другая — к шестому. Испарители //j и И2 имеют свои конденсаторы КИ и КИ2, включенные в систему регенеративного подогрева питательной воды. Умягченная питательная вода испарителей предварительно деаэрируется в деаэраторе при давлении 0,117 МПа. [c.244] Для установок, работающих по схеме, приведенной на рис. 9.6, когда часть вторичного пара испарителей используется для подогрева питательной воды. [c.247] Обычно при проектировании производительность установки задается. Значение продувки принимается (в пределах 2 % паропроиз-водительности). Параметры греющего пара также обычно задаются. Параметры вторичного пара последней ступени либо задаются потребителем (для паропреобразовательной установки), либо определяются по условиям конденсации в конденсаторе. [c.248] При принятых условиях температурный напор в каждом испарителе определяется путем деления суммарного напора на число ступеней и уточняется с учетом потерь давления. Далее находятся параметры вторичного пара в каждой ступени и по уравнениям теплового баланса подогревателей питательной воды определяется количество поступающего в них пара. [c.248] Значение Сц определяется как сумма потока исходной воды, поступающей на установку, и расхода неиспарившейся в испари-теле-расширителе воды за вычетом продувки Gp = - ) ( + Р). Здесь Р — продувка в долях от производительности установки Z) . [c.249] Таким образом, совместное решение (9.7) и (9.8) при принятом значении расхода циркулирующей воды Gyg и выбранном месте включения испарительной установки позволяет определить расчетные параметры вторичного пара испарительной установки и ее производительность. [c.249] Принципиальная схема многоступенчатой установки с испарителями мгновенного вскипания приведена на рис. 9.8. [c.249] Вернуться к основной статье