ПОИСК Статьи Чертежи Таблицы Легирование для придания коррозионной стойкости. Нержавеющие стали из "Коррозия и борьба с ней " Достигнут значительный прогресс в понимании механизма и причин коррозии паровых котлов. Успехи в этой области связаны с развитием экспериментальной техники исследований при высокой температуре и давлении 134—36]. Для ряда систем были составлены диаграммы потенциал—pH (диаграммы Пурбе) при повышенных температурах, что позволяет более точно предсказывать состояние металла в зависимости от его потенциала и pH среды [37]. [c.288] В высокотемпературных водных средах на железе и его сплавах образуется характерная двухслойная оксидная пленка, состоящая в обескислороженных растворах, из магнетита Рез04 [38, 39]. Внешний слой состоит из неплотно упакованных кристаллов диаметром I мкм, внутренний защитный слой — из плотноупакованных кристаллитов диаметром 0,05— ,2 мкм, которые прочно связаны с металлической подложкой. Однако в растворах с очень высокими или очень низкими значениями pH защитный магнетитовый слой растворяется или разрыхляется, в результате чего скорость коррозии увеличивается. Влияние растворенного кислорода более сложно. [c.288] Отмечается, что предельная безопасная концентрация растворенного кислорода находится в обратной зависимости от концентрации в котловой воде ионов С1 . Иными словами, растворенные нейтральные хлориды в отсутствие растворенного кислорода не создают проблем, связанных с коррозией не вызывает проблем и присутствие растворенного кислорода в достаточно чистой воде [19]. [c.289] Следы кислорода, даже если они не наносят вреда непосредственно материалу котла, вызывают коррозию конденсатного тракта, особенно при наличии в конденсате диоксида углерода и аммиака. В результате в котел попадает небольшое количество солей меди, и вслед за этим металлическая медь осаждается на поверхности котла. Хотя коррозия не наносит серьезных повреждений конденсаторам, возникает вопрос, не появится ли в котлах питтинг из-за присутствия меди в котловой воде. По мнению ряда исследователей, осаждение меди не представляет опасности и является следствием гальванического эффекта, при котором ионы Си восстанавливаются на катодных участках вместо ионов Н+. В подтверждение этого предположения указывают на отсутствие коррозионных повреждений во многих котлах, на поверхности которых имеются отложения меди. [c.289] На практике кислород не всегда удаляют из питательной воды (например, во многих локомотивных и корабельных котлах), но при эксплуатации котлов, работающих при давлении выше 2,4 МПа, деаэрация является обязательной операцией. Поттер [32] показал, что в котлах электростанций, работающих в Англии при высоком давлении, при использовании котловой воды с содержанием Оа менее 0,043 мг/л наблюдается в 2 раза меньше случаев коррозии, чем при более высоких концентрациях кислорода. Однако он также отмечал, что из 86 электростанций, применявших воду с содержанием кислорода менее 0,043 мг/л, в 27 % котлов коррозия котловых труб все равно наблюдалась. Поттер пришел к заключению, что деаэрация воды до значений концентраций ниже 0,05 мг/л оправдана в любом случае. Однако остается вопрос, приведет ли более глубокая деаэрация к дальнейшему уменьшению коррозии. [c.289] Следовательно, если какой-то котел подвергается коррозионным разрушениям при применении воды, прошедшей определенную подготовку, то нельзя с очевидностью сказать, является ли эта подготовка достаточной. Для окончательного ответа необходимы статистическая обработка данных обследования большого числа котлов или проведение фундаментальных исследований коррозионных процессов. Существует множество взаимодействующих факторов, связанных с составом питательной воды, кощ трук-цией котла, режимом работы котла и конденсатора. Эти факторы специфичны для каждой котельной установки, и они определяют, будут ли протекать коррозионные разрушения при определенном содержании в воде кислорода и меди. [c.290] Применение гидразина не вызывает подобных возражений, но при расчете необходимой дозы реагента нужно принимать во внимание, что он медленно реагирует с кислородом и частично разлагается до NH3. При случайном загрязнении конденсата кислородом аммиак может послужить причиной КРН медных сплавов, которые используются в конденсатных системах. [c.291] ИНГИБИТОРЫ. СООТНОШЕНИЕ СУЛЬФАТА И ЩЕЛОЧИ. Ингибирующее действие таннинов, которые при высоких температурах предотвращают КРН в котлах, нельзя объяснить конкурентной адсорбцией с 0Н . Подобные процессы невозможны ввиду слабой связи органических молекул с поверхностью металла. Высказывалось предположение, что таннины связывают растворенный кислород. Однако такое действие не должно было бы обязательно приводить к предупреждению КРН, так как нет твердых доказательств отсутствия разрушений этого типа в растворах NaOH, свободных от растворенного кислорода. Можно предположить, что в результате взаимодействия таннинов с NaOH образуются соединения, которые обладают буферными свойствами и действуют аналогично иону Р0 . Они могут также отчасти экранировать дефекты поверхности в зоне сварного шва, в которых в противном случае может задерживаться котловая вода и pH ее со временем повышается. Помимо этого, при применении таннинов вещества, образующие накипь, преимущественно возникают в толще котловой воды, а не на поверхности котла. Этим предупреждается образование узких зазоров на границе со слоем накипи. [c.291] Ингибирующее действие нитритов при температурах эксплуатации котлов, вероятно, связано со сдвигом коррозионного потенциала стали до значений, лежащих вне области критических потенциалов, при которых наблюдается КРН. [c.291] С современной точки зрения этот вывод представляется отчасти верным, но, несомненно, наблюдается также дополнительный эффект, связанный с нейтрализацией NaH Oj серной кислотой. При этом предотвращается накопление в котлах NaOH в результате реакций гидролиза, аналогичных (2). В принципе сульфаты должны обладать определенным ингибирующим действием ввиду предполагаемой способности сдвигать критические потенциалы коррозионного растрескивания под напряжением в область значений, которая удалена от потенциалов коррозии. Однако действие сульфатов в этом плане, видимо, менее эффективно, чем нитратов. [c.292] Легирование является эффективным средством повышения стойкости металлов к воздействию агрессивных сред как при обычных, так и при повышенных температурах. Уже отмечалось, что легирование железа хромом или алюминием способствует повышению стойкости к окислению (разд. 10.9), а введение небольшого количества легирующих добавок меди, хрома или никеля улучшают стойкость в атмосфере (см. разд. 8.4). [c.292] Сплавы золота с медью или серебром сохраняют коррозионную стойкость золота, пока его содержание в сплаве превышает некоторое критическое значение, которое Тамман [1] назвал границей устойчивости. Ниже границы устойчивости сплав корродирует, например в сильных кислотах при этом нераство-ренным остается чистое золото в виде пористого металла или порошка. Такое поведение сплавов благородных металлов известно под названием избирательной коррозии и, очевидно, по характеру сходно с обесцинкованием сплавов медь—цинк (см. разд. 19.2.1). [c.292] При повышенных температурах границы устойчивости не сдвигаются. Иногда при длительном контакте с агрессивной средой коррозия может наблюдаться даже если содержание золота превышает границу устойчивости. Например, сплавы золото—серебро, содержащие более 50 ат. % золота, подвергаются заметной коррозии при выдержке в азотной кислоте при 100 С в течение недели и более [3]. [c.293] Как показано в разд. 5.6, в гомогенных однофазных сплавах пассивность обычно наступает при соотношении компонентов, характерном для каждого сплава, и зависит также от коррозионной среды. Для сплавов Ni—Сг граница устойчивости составляет 30—40 % Ni для сплавов Сг—Со, Сг—Ni и Сг—Fe—соответственно 8, 14 и 12 % Сг. Нержавеющие стали представляют собой сплавы на основе железа которые содержат не менее 12 % Сг. [c.294] Аналогично чистому хрому они пассивны во многих средах и являются наиболее важной в практическом отношении разновидностью пассивных сплавов. [c.295] Вернуться к основной статье