ПОИСК Статьи Чертежи Таблицы Влияние состава из "Коррозия и борьба с ней " Хотя содержание углерода в стали не влияет на скорость коррозии в пресной воде, в морской воде наблюдается небольшое ее увеличение (максимум на 20 %) при повышении содержания углерода от 0,1 до 0,8 % [32]. Причина этого наряду с кислородной деполяризацией, возможно, связана с возрастанием роли реакции выделения водорода в растворах хлоридов (в результате образования комплексов Fe с ионами С1 ), когда увеличивается поверхность, покрытая цементитом Feg . [c.124] Легирование серой и фосфором заметно интенсифицирует растворение в кислотах. Эги элементы образуют соединения с низким водородным перенапряжением к тому же они уменьшают анодную поляризацию, так что коррозия железа увеличивается вследствие ускорения и катодного, и анодного процессов. Скорости коррозии сплавов в растворах кислот представлены в табл. 6.4. [c.125] В сильных кислотах воздействие этих элементов еще более четко выражено (см. рис. 6.14 и табл. 6.4). [c.125] Было обнаружено, что в нейтральных растворах хлоридов включения серы в прокатанную сталь действуют как инициаторы питтингообразования [36,37]. С другой стороны, отмечено, что, примесь серы в стали, содержащей более 0,01 % Си, не оказывает существенного влияния на скорость коррозии в кислотах [33, 38]. Измерения скорости проникновения водорода сквозь катодно-поляризованную. листовую сталь, содержащую игольчатые включения (FeMn)S, показывают, что H S, образующийся на поверхности металла в результате растворения включений, стимулирует (промотирует) проникновение водорода в сталь. Скорость проникновения увеличивается с повышением содержания серы в пределах 0,002—0,24 % S, но только на тех участках, где поступление HjS идет в результате растворения включений [39]. Включения игольчатых сульфидов способствуют водородному охрупчиванию, которое может приводить к быстрому или постепенно развивающемуся растрескиванию, например, стальных трубопроводов [40]. [c.125] В некоторых сталях в небольших количествах присутствует мышьяк. При содержании менее 0,1 % он увеличивает скорость коррозии в кислотах (хотя и в меньшей степени, чем сера и фосфор), при содержании более 0,2 % —снижает [35]. Марганец, присутствующий в обычных количествах, эффективно снижает кислотную коррозию стали, содержащей небольшие примеси серы. [c.125] Включения MnS имеют более низкую электропроводимость, чем FeS, к тому же марганец снижает растворимость серы в твердом железе, восстанавливая тем самым анодную поляризацию железа, пониженную благодаря присутствию серы [41]. Присутствие кремния слегка повышает скорость коррозии в разбавленной соляной кислоте (рис. 6.16). [c.126] Добавление к чистому железу от нескольких десятых до одного процента меди умеренно повышает скорость коррозии в кислотах. Однако в присутствии фосфора или серы, которые обычно содержатся в промышленной стали, медь нейтрализует ускоряющее влияние этих элементов. Поэтому стали, содержащие медь, в неокислительных кислотах обычно корродируют в меньшей степени, чем стали, не содержащие меди 142, 43]. Судя по данным табл. 6.4, 0,1 % Си снижает коррозию сплава, содержащего 0,03 % Р или 0,02 % S в 4 % (Na l + НС1), но этот эф кт не наблюдается для фосфорсодержащего сплава при воздействии лимонной кислоты. Добавка 0,25 % Си к низколегированной стали обусловливает снижение скорости коррозии от 1,1 до 0,8 мм/год в растворе 0,5 % уксусной кислоты и 5 % Na l, насыщенном сероводородом при 25 °С [44]. Эти специфические соотношения применимы только к конкретным составам- и экспериментальным условиям — они не являются общей закономерностью. Сталь, включающая несколько десятых процента меди, более коррозионноустойчива в атмосфере, но не имеет преимуществ перед сталью, не содержащей меди, в природных водах или в почве, где скорость коррозии контролируется диффузией кислорода. [c.126] Показано, что добавка до 5 % хрома (при 0,08 % С) снижает коррозионные потери в воде Панамского канала к концу первого года испытаний [45]. Резкое возрастание скорости коррозии наблюдается на третьем-четвертом году эксплуатации, а после 16 лет хромистые стали теряют на 22—45 % больше массы, чем сталь, содержащая 0,24 % С. [c.126] Глубина питтингов на хромистой стали после годичной эксплуатации в морской воде сравнима с питтингами на углеродистой стали через 16 лет. Следовательно, при столь длительной выдержке стали с малым содержанием хрома не имеют преимуществ перед углеродистой сталью. Низколегированные хромистые стали ( 5 % С) обладают большей устойчивостью к коррозионной усталости в рассолах нефтяных скважин, не содержащих сероводорода [46]. [c.126] Как показали эксперименты в Панамском канале, содержание никеля до 5 % (при 0,1 % С) не сказывается на коррозионной стойкости стали в морской воде [45]. В первый год испытаний глубина питтингов на никельсодержащей стали была меньше, чем на стали с 0,24 % С, но при длительных испытаниях глубина питтингов на углеродистой стали была заметно меньше (после восьми лет испытаний на стали с 5 % Ni питтинг был на 77 % глубже, чем на углеродистой) [47 ]. [c.126] Вернуться к основной статье