ПОИСК Статьи Чертежи Таблицы Влияние катодной поляризации и катализа из "Коррозия и борьба с ней " При катодной поляризации хрома, нержавеющих сталей и пассивного железа пассивность нарушается вследствие восстановления пленки пассивирующего оксида или пленки адсорбционного кислорода (в зависимости от принятой точки зрения на природу пассивности). К тому же, согласно адсорбционной теории, атомы водорода, образующиеся при разряде ионов Н+ на переходных металлах, стремятся раствориться в металле. Растворившийся в металле водород частично диссоциирован на протоны и электроны, а электроны способны заполнять вакансии d-уровня атомов металла. Следовательно, переходный металл, содержащий достаточное количество водорода, более не в состоянии хемосорбиро-вать кислород или пассивироваться, так как у него заполнены d-уровни. [c.98] Эта реакци я быстро протекает в кислой , но медленно в щелочной илн нейтральной водной среде. Например, скорость коррозии железа в деаэрированной воде при комнатной температуре менее 0,005 мм/год. Скорость выделения водорода в этом случае зависит от наличия в металле примесей с низким водородным перенапряжением. На поверхности чистого железа также может выделяться водород, поэтому железо высокой чистоты корродирует в кислотах, но значительно медленнее, чем техническое. [c.100] Растворенный кислород реагирует о атомами водорода, адсорбированными на поверхности железа. Реакция окисления протекает с той же скоростью, с какой Оа достигает поверхности металла. [c.100] НАСЫЩЕННАЯ ВОЗДУХОМ ВОДА. При нормальных температурах в воде с нейтральной, а также слабокислой или слабощелочной реакцией заметная коррозия железа имеет место только в присутствии растворенного кислорода. В насыщенной воздухом воде начальная скорость коррозии может достигать 10 г/(м -сут). Эта скорость через несколько дней снижается вследствие образования пленки оксида железа, которая действует как барьер для диффузии кислорода. Стационарная скорость корро-. зии может быть 1,0—2,5 г/(м -сут) и возрастает с увеличением скорости потока. Так как скорость диффузии в стационарном состоянии пропорциональна концентрации Oj, из уравнения (2) следует, что и скорость коррозии железа пропорциональна концентрации Ог- Типичные данные показаны на рис. 6.1, а. В отсутствие растворенного кислорода скорость коррозии как чистого железа, так и стали при комнатной температуре незначительна. [c.101] ПОВЫШЕННОЕ ПАРЦИАЛЬНОЕ ДАВЛЕНИЕ КИСЛОРОДА. Хотя увеличение концентрации кислорода вначале и ускоряет коррозию железа при концентрации Оа выше критической скорость коррозии снова снижается [1а]. [c.101] Зависимость скорости коррозии от концентрации кислорода носит линейный характер. Отклонения от линейной зависимости при изменении содержания кислорода в дистиллированно) воде больше, чем в воде, содержащей ион С1 (рис. 6.1, а). В дистиллированной воде критическая концентрация кислорода, свыше которой коррозия снова уменьшается, равна около 12 мл/л (рис. 6.1, Ь). Это значение возрастает при растворении в воде солей или повышении температуры и снижается с увеличением скорости перемешивания и pH. При pH = 10 критическая концентрация кислорода достигает значения, соответствующего насыщению воды воздухом (6 мл Ог/л), а для более щелочных растворов она ниже. [c.101] Кинг и Миллер считают [3], что реакция выделения водорода происходит на сульфиде железа, который, в свою очередь, образуется в результате реакции иона Fe + с сульфид-ионом, выделяемым бактериями. Они предположили также [4], что бактерии увеличивают количество активного сульфида железа, на котором может идти реакция выделения Hj. Особенно серьезные повреждения сульфатвосстанавливающие бактерии наносят нефтяным отстойникам, подземным трубопроводам, водоохлаждаемым прокатным станам или обсадным трубам глубоких скважин. На Среднем Западе США в результате коррозии под действием сульфат-восстанавливающих бактерий за 2 года вышли из строя водозаборные трубы для артезианской воды — диаметром 50 мм, с гальваническим покрытием коррозия в предварительно хлорированной воде была значительно меньше. [c.104] К хлорированию воды прибегают для уменьшения повреждений, вызванных этими бактериями, хотя, по некоторым данным, эта мера не всегда эффективна. Аэрирование воды снижает активность бактерий, так как они нежизнеспособны в присутствии растворенного кислорода. [c.104] Если скорость коррозии контролируется диффузией кислорода, то для данной концентрации О2 скорость приблизительно удваивается при повышении температуры на каждые 30 °С 171. В открытом сосуде, из которого растворенный кислород может улетучиваться, скорость коррозии увеличивается с ростом температуры до 80 °С, а затем падает до очень низкого значения при закипании воды (рис. 6.2). Такое резкое снижение связано с заметным уменьшением растворимости кислорода в воде, и этот эффект в конце концов подавляет ускоряющее влияние собственно температуры. В закрытой системе кислород не может улетучиваться, поэтому скорость коррозии продолжает расти с повышением температуры до тех пор, пока весь кислород не будет израсходован. [c.104] Если коррозия сопровождается выделением водорода, скорость ее возрастает более чем вдвое с увеличением температуры на 30 °С. Например, скорость коррозии железа в соляной кислоте удваивается при повышении температуры на каждые 10 С. [c.105] Влияние pH аэрированной чистой (или мягкой ) воды на коррозию железа при комнатной температуры показано на рис. 6.3. Определенные значения pH достигались добавлением гидроксида натрия или соляной кислоты [8]. [c.105] В пределах pH =4-f-10 скорость коррозии определяется только скоростью диффузии кислорода к поверхности металла. Основной диффузионный барьер — пленка оксида железа(П) — постоянно обновляется в ходе коррозионного процесса. Независимо от величины pH воды в этих границах поверхность железа всегда контактирует со щелочным раствором, насыщенным гидратированным оксидом железа (pH 9,5). [c.105] В кислой среде (pH 4) пленка оксида железа растворяется, значение pH на поверхности железа снижается, и металл находится в более или менее непосредственном контакте с водной средой. При этом увеличение скорости реакции является результатом как значительной скорости выделения водорода, так и кислородной деполяризации. [c.105] Увеличение щелочности среды (pH 10) вызывает возрастание pH на поверхности железа. Скорость коррозии при этом уменьшается, так как железо все больше и больше пассивируется в присутствии щелочей и растворенного кислорода, что описано в разд. 6.1.1 ( Повышенное парциальное давление кислорода ). [c.105] Скорость образования РеОг в концентрированных щелочах при комнатных температурах невелика, но вследствие заметной поляризации анодных и катодных областей при температурах кипения она сильно возрастает. [c.106] Следовательно, так как при pH =4ч-10 коррозия ограничена скоростью диффузии кислорода через слой оксида, небольшие изменения состава стали, термическая и механическая обработка ее не повлекут за собой изменений коррозионных свойств металла, пока диффузионно-барьерный слой остается неизменным. Скорость реакции определяют концентрация кислорода, температура или скорость перемешивания воды. Это важно, так как pH почти всех природных вод находится в пределах 4—10. Значит, любое железо, погруженное в пресную или морскую воду, будь то низко-или высокоуглеродистая сталь, низколегированная сталь, содержащая, например, 1—2 % Ni, Мп, Мо и т. д., ковкое железо, чугун, холоднокатаная малоуглеродистая сталь, будет иметь практически одинаковую скорость коррозии. Этот вывод подтверждается большим количеством лабораторных и промышленных данных для разнообразных типов железа и стали 111]. Некоторые из них приведены в табл. 6.1. Эти данные опровергают распространенное мнение, что ковкое железо, например, является более коррозионностойким, чем сталь. [c.107] Влияние горячей обработки Среда — дистиллированная вода, при 65 °С. [c.108] Вернуться к основной статье