ПОИСК Статьи Чертежи Таблицы Модели поведения материалов из "Суперсплавы II Жаропрочные материалы для аэрокосмических и промышленных энергоустановок Кн1 " Инженер-конструктор создает продукцию двух видов проект деталей и узлов, представленный чертежами и описательными ведомостями, и прогнозную оценку (расчет) их надежности и работоспособности. Именно второй вид продукции требует самых больших усилий и наиболее активного сотрудничества с разработчиками материалов. Предметом рассмотрения в данном случае является такой аспект работоспособности деталей, как рабочая долговечность. Чтобы предсказать ее, инженер должен определить напряжения, температуру, химический состав рабочей среды и характеристики поведения материала. Для этого он может воспользоваться собственными расчетами, проведением испытаний или консультацией специалистов. Чтобы описать поведение, можно использовать характеристики как связанные, так и не связанные с разрушением. К последней группе характеристик относятся такие свойства, как модули нормальной упругости и сдвига, коэффициент Пуассона, коэффициент линейного расширения, теплопроводность, излучательная способность, плотность. Они нужны для расчета напряжений, деформаций и температур. В числе связанных с разрушением рассматривают коррозионные свойства, характеристики ползучести и длительной прочности, диаграммы много- и малоцикловой усталости, характеристики вязкости разрушения, текучести и предела прочности. Совместное рассмотрение всех этих характеристик приводит к выводу, что механизмы разрушения (в их зависимости от температуры и числа циклов нагружения) представляют наибольший интерес для конструкторов камеры сгорания, а также рабочих и направляющих лопаток. [c.63] Особенностью уравнения (2.1) является то, что оно принимает любой вид (из числа представленных в табл.2.1), соответственно которому ведет себя данный материал. [c.67] Усталость (подробно она рассмотрена в гл.10) — это понижение стойкости материала против повторно-циклического действия напряжений или циклического деформирования. В предшествующих разделах уже введены термины мало- и многоцикловая усталость. Инженеры ввели эти термины и различают их по количеству циклов, уровню напряжений по отношению к пределу текучести и характеру разрушения. С точки зрения конструктора деталей турбины более практично представлять, что малоцикловая усталость есть (обычно) результат термомеханических деформаций, совершающихся единожды за каждый пуск турбины или за каждое изменение нагрузки, тогда как многоцикловая усталость — это следствие деформаций, совершающихся единожды или многократно за каждый оборот ротора. [c.68] Малоциклоеая усталость. Чтобы рассчитать долговечность материала в условиях малоцикловой усталости конструктору деталей турбины нужна модель поведения материала, связывающая какие-то легко наблюдаемые условия с количеством рабочих циклов, не приводящих к отказу детали. Результаты расчетов по первой из таких моделей, разработанной с позиций физики твердого тела, при сопоставлении с результатами испытаний оказались чрезвычайно обнадеживающими. Чтобы улучшить согласие, ввели представление об изначально присутствующих микротрещинах, а свойства материала выразили через энергию единицы поверхности трещины. Эта концепция была распространена Гриффитсом [Ю] на разрушение вообще, хотя родилась она при экспериментировании на хрупких материалах. Этот фундамент механики разрушения был заложен в 1920 г., однако вплоть до недавнего времени большинство оценок усталостной долговечности для каждого конкретного материала основывали на эмпирической зависимости между величиной циклической нагрузки и числом циклов до разрушения. [c.68] Усталостная модель Коффина-Менсона и метод универсальных наклонов, разработанный Менсоном, в большей мере относились к высокопластичным материалам малой прочности. Суперсплавы для рабочих лопаток — высокопрочные и малопластичные - служат п и высоких температурах и под воздействием термомеханических нагрузок. Подвергаясь к тому же воздействию химически агрессивных сред, они должны сопротивляться ползучести и усталости. В таких условиях слепо следовать упомянутым моделям для прогнозирования усталостной долговечности не рекомендуется. Надо опираться на реальные, достоверные данные испытаний на малоцикловую усталость. [c.69] Увязка физики твердого тела и результатов лабораторных испытаний с прогнозированием долговечности деталей газовых турбин усложняется множеством факторов. Рассмотрим один участок, где образуются трещины малоцикловой усталости, — место на ведущей кромке рабочей лопатки, удаленное от верщинной и корневой частей лопасти. В простейщем случае цепочка событий в работе турбины состоит из пуска, ускорения, нагружения, разгрузки и останова. [c.70] Этой цепочке соответствует некоторая последовательность изменений температуры на входе турбины и скорости вращения двигателя (рис.2.11), вызывающая, в свою очередь, последовательность в изменении температуры двигателя (рис.2.12). Все три последовательности очень важны, ибо для простой системы охлаждения можно показать, что деформация в направлении натяжки по поверхности лопасти есть функция разницы между температурой в рассматриваемой точке и средней температурой в поперечном сечении лопасти. Это условие не выполняется для тонкостенных лопастей, но сохраняет значимость в случаях, когда локальная деформация сильно зависит от некоторой пары температур, по-разному реагирующих на скорость изменения температуры рабочей среды. [c.70] К счастью, появились работы Остергрена [14], Рассела [15] и других авторов, сделавшие серьезные шаги к корреляции усталостных испытаний (при одноосном нагружении и неизменной температуре) с рабочим циклом для реальной и идеализированной детали двигателя. В поисках такой корреляции исследовали различные варианты температурной зависимости напряжения или деформации при этом измеряли амплитуды полной деформации, максимальное напряжение, напряжение, соответствующее стационарному режиму работы двигателя, время действия стационарного режима, температуры, соответствующие максимальной деформации, максимальную температуру и другие характеристики. Были предложены корреляционные подходы, однако все их пропагандисты в один голос предостерегают от непродуманного применения этих подходов. Корреляция была вполне удовлетворительной для определенных у 4астков рабочих лопаток и определенных циклов работы двигателя. Но удовлетворительность зависела от того, насколько верно был идентифицирован микромеханизм усталости данного сплава при данных характеристиках рабочего цикла. Действительно, состояние прогнозирования длительности периода до возникновения трещин малоцикловой усталости в рабочих лопатках таково, что значительное улучшение точности прогноза по-прежнему может быть достигнуто только путем моделирования фактической локальной деформации детали и температурной картины на лабораторном образце, геометрия которого аналогична геометрии рассматриваемой детали. [c.72] Результаты изотермических усталостных испытаний продолжают использовать для ранжирования кандидатных сплавов по их достоинствам применительно к той или иной роли однако, чтобы прогнозировать долговечность, требуются дополнительные испытания, моделирование рассматриваемой детали, рабочего цикла, влияния среды. [c.73] Рассчитав и изучив возбудители колебаний, получают базу данных, которые обычно представляют диаграммой Кемп-бэлла (рис.2.15). Конструктор старается избежать резонанса с обнаруженными возбудителями в диапазоне тех скоррс-тей, при которых предполагается длительная эксплуатация турбины. Это удается не всегда. Вынужденный выбирать, конструктор предпочитает избегать тех резонансов, которые приведут к наиболее высоким относительным напряжениям. Он конструирует виброгасящие устройства, позволяющие смягчить влияние колебательных мод, которые внушают наибольшие опасения. Как бы то ни было, рассчитывают и измеряют переменные напряжения, порождаемые каждой модой. [c.74] Уже ранние исследования продемонстрировали важную роль среднего напряжения для живучести материала в условиях многоцикловой усталости. Для их характеристики используют диаграмму, известную под названием видоизмененной диаграммы Гудмена (рис.2.1б). Долговечность детали определяют, нанося рассчитанные значения среднего и переменного напряжений и интерполируя число циклов до разрушения. [c.75] Анализ характеристик многоцикловой усталости включает оценку допускаемого размера дефектов рассматриваемой детали с помощью методов механики разрушения. Применительно к малоцикловой усталости такие методы можно использовать для прогнозирования роста трещины и назначения сроков проверки или замены детали. При таком подходе сроки службы деталей могут превысить время до возникновения трещины. Однако вполне вероятно, что в условиях многоцикловой усталости любая трещина, распространяющаяся в результате колебания напряжений, связанного с оборотами двигателя, приведет к разрушению за весьма короткое время. [c.75] Допустимый размер трещины. Процедура назначения допустимых размеров дефекта начинается с того, что определяют размер, которого трещина не достигнет при ожидаемом уровне переменных напряжений. Затем придают этому размеру смысл предельного роста трещины за число циклов нагружения, предусмотренное паспортом для запуска турбины. Определив размер, начиная с которого трещина вырастает до предельного за расчетный срок службы турбины, принимают его за начальный допустимый размер трещины. Однако решение задачи этим не исчерпывается. Чтобы паспортное значение допустимого исходного размера трещины гарантировало низкую скорость ее роста до недопустимого уровня, это значение уточняют на базе статистических оценок и методов неразрушающего контроля. [c.75] Управление содержанием серы как метод подавления коррозии оказалость неэффективным, однако ослабить коррозию можно путем точной регулировки расхода топлива, применения входных фильтров и ингибиторов. Чтобы повысить сопротивление лопаток коррозии, их изготавливают из специально разработанных и модифицированных сплавов. Теперь в авиадвигателях и промышленных турбинах применяют защитные покрытия, что также существенно продляет срок службы лопаток (рис.2.17). Повысить живучесть лопаток в условиях коррозии можно и путем изменения их конфигурации, в частности, оптимизировав толщину их стенки, т.е. расстояние между наружной поверхностью и поверхностью внутренних охлаждающих каналов в результате обеспечивается улучшенное сочетание температуры поверхности лопатки с коррозионными потерями [16]. Для проведения подобной оптимизации и прогнозирования живучести детали требуется достаточно точная модель развития коррозии. [c.76] Вернуться к основной статье