ПОИСК Статьи Чертежи Таблицы Плавка в кислой электропечи из "Металлургия черных металлов " Кислые электропечи футеруют огнеупорными материалами на основе кремнезема. Эти печи имеют более глубокие ванны и в связи с этим меньший диаметр кожуха, меньшие тепловые потери и расход электроэнергии. Стойкость футеровки свода и стен кислой печи значительно выше, чем у основной. Это объясняется малой продолжительностью плавки. Печи с кислой футеровкой вместимостью 1—3 т применяются в литейных цехах для производства стального литья и отливок из ковкого чугуна. Они допускают периодичность в работе, т. е. работу с перерывами. Известно, что основная футеровка быстро изнашивается при частом охлаждении. Расход огнеупоров на I т стали в кислой печи ниже. Кислые огнеупоры дешевле, чем основные. В кислых печах быстрее разогревают металл до высокой температуры, что необходимо для литья. Недостатки кислых печей связаны прежде всего с характером шлака. В этих печах шлак кислый, состоящий в основном из кремнезема. Поэтому такой шлак не позволяет удалять из стали фосфор и серу. Для того чтобы иметь содержание этих примесей в допустимых пределах, необходимо подбирать специальные шихтовые материалы, чистые по фосфору и по сере. Кроме того, кислая сталь обладает пониженными пластическими свойствами по сравнению с основной сталью вследствие присутствия в металле высококремнистых неметаллических включений. [c.189] Широкое распространение получают методы производства низкоуглеродистой коррозионностойкой стали вне электропечи. [c.189] Метод AOD. В электропечи выплавляют основу нержавеющей стали, содержащей заданное количество хрома и никеля, с использованием недорогих, высокоуглеродистых ферросплавов. Затем сталь вместе с печным шлаком заливают в конвертер, профиль которого представлен на рис. 8]. Футеровка конвертера изготовлена из магнезитохромитового кирпича. Стойкость футеровки до 200 плавок. В иижней зоне футеровки, в третьем ряду кирпичной кладки от днища конвертера, устанавливают 5—6 фурм для подачи газа. Фурмы представляют собой конструкцию из медной внутренней трубы и наружной трубы из нержавеющей стали, внутренний диаметр фурмы I2- I5 мм. Начальное содержание углерода в стали может быть для ферритных хромистых сталей 2,0—2,5 %, а для аусте-нитных сталей 1,3—1,7%. В -первые 35 мии сталь продувают смесью кислорода и аргона в соотношении 3 1. Во избежание перегрева металла в конвертер присаживают лом данной марки стали, феррохром и т. п. Затем в течение 9 мин сталь продувают смесью кислорода и аргона в соотношении 1 1. В это время концентрация -углерода снижается до 0,18 %. В третьем периоде в продувочном газе еще более уменьшают отношение кислорода к аргону до 1 2, продувку продолжают еще 15 мии. За это время содержание углерода снижается до 0,035 %. Температура повышается до 1720°С. В конце продувки присаживают известь и ферросилиций для восстановления хрома из шлака. После восстановления шлак, содержащий I % СггОз, скачивается и после наведения нового шлака проводят окончательную продувку аргоном. При этом в шлак переходит сера, ее содержание в металле снижается до 0,010%. [c.190] В результате процесса AOD получают высококачественную нержавеющую сталь с низким содержанием углерода, серы, азота, кислорода, сульфидных и оксидных неметаллических включений, с высокими механическими свойствами. Для повышения экономичности процесса аргон частично заменяют азотом. Средняя продолжительность продувки составляет 60—120 мин, расход аргона составляет 10—23 м /т, кислорода 23 м т. На рис. 82 представлено изменение температуры и состава металла. Степень извлечения хрома составляет 98 %. [c.190] Вернуться к основной статье