ПОИСК Статьи Чертежи Таблицы Электрошлаковый переплав нержавеющих сталей из "Нержавеющая сталь " Среди новых рафинирующих переплавов электрошла-ковый переплав (ЭШП) (рис. 63) получил наибольшее развитие благодаря несложности необходимого оборудования и высокому качеству переплавленного металла при относительно небольших затратах на переделе. Созданный в институте электросварки им. Е. О. Патона и впервые опробованный на заводе Днепроспецсталь ЭШП за 15 лет сделал гигантский скачок от слитка массой 0,2—0,4 т в промышленности перешли к массовому производству слитков круглого, квадратного и прямоугольного сечения массой до 40 т (проектируются печи для слитков массой 150—200 г). [c.217] Значительно развита технология переплава, широко внедрено производство литых расходуемых электродов, расширился сортамент переплавляемой стали. Направленная кристаллизация слитка в сочетании с рафинированием металла шлаком позволили повысить такие качественные характеристики стали, как плотность и однородность структуры, чистота по неметаллическим включениям и газам, пластические свойства, особенно в поперечном направлении и др. [c.217] В настоящее время накоплено достаточно данных о влиянии ЭШП на качество нержавеющих сталей. Макроструктура слитков ЭШП характеризуется высокой плотностью и однородностью, что, естественно, обеспечивает высокое качество деформированного металла даже при малых степенях деформации. Наличие послойной кристаллизации в структуре не является браковочным признаком и отражает прерывистый характер кристаллизации. Проведенные нами исследования подтвердили высокое качество металла с послойной кристаллизацией [161]. Для слитка ЭШП характерно очень равномерное и дисперсное распределение второй фазы, например, первичного феррита, боридной или карбидной эвтектики в аустенитной основе. Например, если в обычном слитке аустеиито-ферритной стали содержание феррита по мере приближения к центру слитка возрастает с 20 до 30—32%, а выделения феррита имеют грубый характер, то в слитке ЭШП строение феррита более тонкое, а разница его содержания по сечению слитка не превышает 5%. [c.218] Плотная структура слитков ЭШП характерна и для таких сталей, как Х8, ЭИ961, ЭИ481, которые склонны к образованию осевых дефектов (трещин) в обычных слитках. Однако следует отметить, что с переходом к производству крупных слитков. (более 10 т) необходимо особенно тщательно разрабатывать и соблюдать технологию ЭШП, ибо вследствие увеличения теплового сопротивления при кристаллизации могут возникать ликвационные явления. Поэтому важно обеспечить осевую или радиаль-но-осевую направленность кристаллов, что достигается в первую очередь регулированием скорости наплавления металла. [c.218] При ЭШП стали типа Х18Н10Т наблюдается в нижней части слитка угар титана и пригар кремния и алюминия. В дальнейшем, т. е. в остальных частях слитка, положение стабилизируется и характеризуется лишь стабильным угаром титана. Степень угара титана, а при его отсутствии кремния, бора, алюминия, марганца, а также снижение содержания серы характеризуются данными, приведенными в табл. 25. Угар указан по максимальному значению. [c.219] Изменение содержания других элементов при ЭШП практически не наблюдается (содержание азота при концентрациях до 0,8% остается стабильным). Изменение содержания цветных металлов и газов приведено в табл. 25. [c.219] При электрошлаковом переплаве значительно снижается загрязненность металла неметаллическими включениями и полностью устраняются скопления включений, являющихся источником макродефектов (волосовин, загрязнений в изломе и т. п.). [c.219] Примечание. Угар серы во всех случаях составлял 0,002—0,005 при начальном содержании 0,010% (меньшее значение в атмосфере аргона). [c.220] Одним из важных преимуществ металла ЭШП перед другими переплавами является значительная десульфурация металла и уменьшение сульфидных включений. В тесной связи с рафинированием металла от включений находится и снижение содержания газов кислорода и водорода. Содержание азота заметно снижается в сталях, легированных кремнием и алюминием, несколько снижается в хромистых сталях и сохраняется на прежнем уровне в сталях, легированных титаном, ниобием и цирконием. [c.220] Электрошлаковый металл оценивали металлографическим методом по шкале ГОСТ 1778—62, а также по специально разработанной методике ЦНИИЧМ, предусматривающей подсчет количества кислородных включений (при увеличении 170) по размерныд1 группам от 7 до 14 мкм (I группа), от 14—21 мкм (II группа), от 21 до 28 мкм (III группа). Полученные результаты приведены в табл. 26. [c.221] Таким образом, при разработке технологии ЭШП необходимо учитывать и корректировать технологию выплавки исходного металла. [c.221] Электрошлаковый металл имеет более высокие значения относительного удлинения и сужения, ударной вязкости, в особенности в поперечных образцах. Последнее обеспечивает значительное уменьшение анизотропии механических свойств (с 1,7—3,0 до 1,2—1,6). [c.221] Для более полного представления о служебных характеристиках сплавов проверили влияние ЭШП на чувствительность к надрезу при испытаниях на длительную прочность при 700, 800, 900 и 950° С. Результаты исследования [159] показывают, что при этих температурах ЭШП повышает стойкость гладких образцов и значительно уменьшает чувствительность стали к концентрации напряжений при радиусе надреза 0,5 мм (в 2,5— 50 раз). Существенно увеличивается длительная прочность металла после ЭШП. Так, сталь ЭИ481Ш имела длительную прочность в продольных образцах 155 ч, в поперечных 136 ч, тогда как исходный электродуговой металл разрушался соответственно через 23 и 12 ч. [c.223] В последние годы большое распространение получают комплексные методы получения высококачественных сталей, в которых используются сразу два-три переплава. Например, сталь ЭИ844Б наиболее высокого качества получена при дуплексе ЭШП+ЭЛП. В ряде случаев сталь выплавляют методом ВИП с последующим ЭШП или ВДП. Новые методы плавки и их сочетания позволяют резко повысить металлургическое качество нержавеющих сталей, использовать новые композиции легирующих элементов и практически решить все задачи, которые ставят машиностроители перед металлургами. [c.224] Вернуться к основной статье